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signatures of the Supervising Committee which precede all other material in the dissertation
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This dissertation addresses three important problems in manufacturing and service opera-

tions management.

In Chapter 2, we study sourcing and pricing decisions of a firm with correlated suppliers

and a price-dependent demand. With two suppliers, the insight—cost is the order qualifier

while reliability is the order winner—derived in the literature for the case of exogenously

determined price and independent suppliers, continues to hold when the suppliers’ capaci-

ties are correlated. Moreover, a firm orders only from one supplier if the effective purchase

cost from him, which includes the imputed cost of his unreliability, is lower than the whole-

sale price charged by his rival. Otherwise, the firm orders from both. Furthermore, the

firm’s diversification decision does not depend on the correlation between the two suppliers’

random capacities. However, its total order quantity decreases as the capacity correlation

increases in the sense of the supermodular order. With more than two suppliers, the insight

no longer holds. That is, when ordering from two or more suppliers, one is the lowest-cost

supplier and the others are not selected on the basis of their costs. We also develop a

solution algorithm for the firm’s optimal diversification problem.
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In Chapter 3, we study sourcing decisions of price-setting and price-taking firms with two

unreliable suppliers, where a price-setting firm sets the retail price and a price-taking firm

takes the retail price as given. We investigate the impacts of market conditions, suppliers’

wholesale prices and their reliabilities on the optimal sourcing decisions of price-setting and

price-taking firms, and examine how a firm’s pricing power affects these impacts. We define

a supplier’s reliability in terms of the “size” or the “variability” of his random capacity

using the concepts of stochastic dominance. We find that the supplier reliability affects the

optimal sourcing decisions differently for price-setting and price-taking firms. Specifically,

with a price-setting firm, a supplier can win a larger order by increasing his reliability, it is

not always so with a price-taking firm.

In Chapter 4, we consider a supply chain in which the manufacturer has two production and

sales opportunities and sells the product to a retailer. The manufacturer’s second-period

production cost declines linearly in the first-period production quantity. We show that as

the production cost learning process becomes more efficient and less stable, the traditional

double marginalization problem becomes more severe. This leads to a greater efficiency

loss in the decentralized channel. We propose a two-period revenue sharing contracts to

coordinate the two-period dynamic supply chain. We also investigate the implications of

the learning curve on the value of strategic inventory.

ix
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CHAPTER 1

INTRODUCTION

1.1 Supply Diversification with Responsive Pricing

Supply diversification or multiple sourcing has been demonstrated to be an effective strat-

egy for firms to ward against potential supply disruptions due to natural disasters, random

yields, quality issues, delivery uncertainties, supplier bankruptcies, etc. Firms not diversi-

fying properly may incur significant financial losses from supply disruptions. In 2000, when

a fire occurred at a semiconductor plant in New Mexico, which was the primary source for

one of the key electronic chips for Ericsson and Nokia, Ericsson lost at least $400 million

in potential revenue as a result of not having a “Plan B”, while Nokia was able to source

from alternative suppliers to avoid substantial financial losses (Latour 2001). Forty-two

days after the March 11 (2011) earthquake/tsunami struck Japan, Toyota said it still faces

critical shortages for about 150 parts which already dropped from roughly 500 parts in mid-

March. Executive Vice President Shinichi Sasaki said Toyota will reassess its dependence on

single-source suppliers in Japan (Dawson and Takahashi 2011). For those firms that Toyota

sourced from, it is important to implement supply diversification to avoid substantial losses

of business.

The extant literature on supply diversification largely assumes that the suppliers’ capaci-

ties are independent for analytical tractability. Under this assumption, it is well known that

“cost is the order qualifier while reliability is the order winner” (“cost first reliability second”

for short). However, supplier independence does not often hold in reality. The suppliers’

capacities are correlated because suppliers are linked through their industries, customers,

suppliers, geographic proximity, and national economies. For example, most suppliers in

Japan were affected by disruptions caused by the earthquake mentioned above. It is very

1
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likely in this situation that their capacities are positively correlated (Clark and Takahashi

2011). Capacity dependence among different suppliers may also occur when the suppliers’

total capacity is limited by a quota set by a central government. When China reduces its

export quota for rare-earth elements (REE), capacities of all Chinese REE suppliers will

be affected (WSJ 2010), resulting in a positive correlation among the suppliers. Negatively

correlated capacities among suppliers may happen when suppliers have to compete for the

same critical resource/component for their operations. It would be interesting to see if the

cost-first-reliability-second insight can be extended to cases where suppliers capacities are

dependent.

Another strategy that firms adopt to deal with supply uncertainties is responsive pricing,

i.e., firms determine retail prices after supply uncertainties are resolved. Dell responds to

supply disruptions in memory cards via shifting customer demand to lower-memory personal

computers by adjusting prices (Tomlin 2006). In the semiconductor and electronic compo-

nent industries, many manufacturers respond to supply disruptions by adjusting prices based

on, among other factors, the availability of inventory on hand (Li and Zheng 2006). It is

natural that firms will raise the retail prices when they encounter shortages. For instance,

spot prices of the 4-gigabit NAND flash memories that find their way into smartphones,

tablet computers, and digital cameras rose 17 percent on March 14, 2011 after the earth-

quake struck Japan (Einhorn et al. 2011). Therefore, it is important to study the firm’s

supply diversification problem with responsive pricing.

1.2 How does Pricing Power Affect A Firm’s Sourcing Decisions from Unreli-

able Suppliers?

The benefit of multiple sourcing or supply diversification is well established in mitigating

supply risks arising from supply disruptions caused by natural disasters, random yields/capacities,

delivery uncertainties, quality issues, suppliers declaring bankruptcy, etc. An example is the

March 11, 2011 earthquake in Japan that totally disrupted the global supply chains of some
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prominent firms (Dawson and Takahashi 2011). According to Shinichi Sasaki, the Executive

Vice President of Toyota, “Even in cases where we thought we had more than one supplier,

it turned out in many cases that they procured subcomponents from just one firm.” That

is, Toyota would have liked its supplier firms to be multi-sourcing. Indeed, according to

(Dawson 2011), the post-quake crisis has prompted auto makers to seek ways to diversify

their supply chains for critical components. See also Tomlin (2006) and Federgruen and

Yang (2009) for other examples of supply diversification.

In this Chapter, we study how pricing power affects a firm’s sourcing decisions from

unreliable suppliers. A firm’s pricing power is its ability to adjust the market price of a good

or service. A firm’s pricing power depends on a number of factors including its product’s

uniqueness in the marketplace, competition from similar products, consumer perception of

the quality of the product, and the effectiveness of the company’s advertisement campaign.

In a perfectly competitive market, a firm has no pricing power, whereas a monopoly can set

its price to maximize its profit. In this work, we study the sourcing decisions of price-setting

and price-taking firms from unreliable suppliers and examine the impacts of their different

pricing powers by comparing their sourcing strategies. For our purposes, a price-setting firm

is one that sets the retail price after supply uncertainty is resolved, whereas a price-taking

firm sells its product at an exogenously given retail price.

1.3 Strategic Inventories and Dynamic Coordination with Production Cost

Learning

The phenomena of production learning, i.e., the decline of production cost with cumulative

production has been well observed in the last few decades and in a number of industries

such as aircraft manufacturing, automobile assembly, apparel manufacturing, production

of large musical instruments, and semiconductor manufacturing (see, for example, Wright

1936, Baloff 1971, Yelle 1979, Hatch and Mowery 1998). Operations managers have used

learning curve as a strategic tool for capacity planning decisions (Mazzola and McCardle
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1997). Most existing research on this subject focuses only on deriving the optimal production

quantity from the manufacturer’s perspective. However, under make-to-order policy in a

decentralized channel, the manufacturer sells the product through an independent retailer

and produces according to the retailer’s order. The retailer’s decisions will certainly affect

the manufacturer’s production decisions. Furthermore, if both the manufacturer and the

retailer have market power to set prices, their pricing strategies will greatly impact the

demand of the product and therefore the manufacturer’s production decisions.

Inventory may be carried for operational reasons such as economy of scale in production,

delivery and production lead time, uncertain consumer demand and manufacturing capac-

ity constraints. Besides these classical reasons for holding inventories, previous research

has analyzed the strategic roles that inventories can play in both horizonal and vertical

competitions. For example, inventories serve as a commitment to achieve the first-mover

advantage (Saloner 1986) and deter deviation from collusive profits (Rotemberg and Saloner

1989). In a vertical supply chain with a buyer and a supplier, the buyer carries strategic

inventories from the first period to force the supplier to offer favorable wholesale price terms

in the second period (Anand et al. 2008). Strategic inventory can effectively alleviate the

well-known double marginalization effect1 Therefore, it can be used to improve the channel

efficiency. In this chapter, we investigate how the value of strategic inventory is affected in

the presence of production cost learning.

1.4 Organization of the Dissertation

In Chapter 2, we study sourcing and pricing decisions of a firm with unreliable dependent

suppliers and a price-dependent demand. We investigate whether the insight—cost is the

order qualifier while reliability is the order winner—derived in the literature for the case

of exogenously determined price and independent suppliers continues to hold when the

1Double marginalization is a well-known problem in a decentralized supply chain. When the supplier and
the buyer maximize their individual profits, the buyer and supplier add their margins to the price quoted
downstream and the final retail price is higher than the systematic optimal level.
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suppliers’ capacities are correlated. Moreover, we examine how the firm’s diversification

decisions depend on the capacity correlation.

In Chapter 3, we study sourcing decisions of price-setting and price-taking firms with

two unreliable independent suppliers. We investigate the impacts of market conditions,

suppliers’ wholesale prices and their reliabilities on the optimal sourcing decisions of price-

setting and price-taking firms, and examine how a firm’s pricing power affects these impacts.

In Chapter 4, we consider a decentralized supply chain in which the manufacturer has

two production and sales opportunities and sells the product to an independent retailer.

The second-period production cost declines linearly in the first-period production quantity

with some randomness in the learning rate. We investigate the implications of the learning

curve on the value of strategic inventory and dynamic channel coordination.

Li et al. (2012a) is based on Chapter 2. The main results in Li et al. (2012b) are from

Chapter 3 and the main results in He et al. (2012) are based on Chapter 4. I would like to

express my sincere appreciation to my co-authors, Professors Suresh P. Sethi, Jun Zhang,

and Xiuli He for their invaluable contributions.



www.manaraa.com

CHAPTER 2

SUPPLY DIVERSIFICATION WITH RESPONSIVE PRICING

2.1 Synopsis

We study sourcing and pricing decisions of a firm with unreliable dependent suppliers and

a price-dependent demand. By an unreliable supplier, we mean that the supplier’s capacity

(maximum quantity he can deliver) is a random variable. Our analysis demonstrates that

with two dependent suppliers, the cost-first-reliability-second insight in picking suppliers

continues to hold. Whether a firm purchases from a supplier depends on his wholesale

price and the effective purchase cost from his rival, where the effective purchase cost from

a supplier is defined to be his wholesale price plus the imputed cost of his unreliability.

Specifically, the firm always orders from the supplier with the lower wholesale price. If the

effective purchase cost from this supplier is less than his rival’s wholesale price, the firm

orders only from this supplier. Otherwise, the firm should order from both.

We demonstrate that with two suppliers, the firm’s diversification decision depends on

the suppliers’ random capacities only through their marginal distributions. In other words,

the correlation structure between the suppliers’ capacities has no bearing on the firm’s di-

versification decisions. Nevertheless, the correlation structure does affect the firm’s optimal

order quantities when it chooses to diversify. As the suppliers’ capacities become more

correlated in the sense of the supermodular order, the firm’s optimal total order quantity

decreases. Furthermore, when both suppliers’ wholesale prices are low, the optimal order

quantity for each supplier decreases as the capacity correlation increases in the supermodular

order.

With more than two suppliers, the insight “cost first reliability second” no longer holds.

That is, when ordering from two or more suppliers, one is the lowest-cost supplier and the

6
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others are not selected on the basis of their costs. Specifically, a low wholesale price does

not guarantee an order from the firm, although the lowest wholesale price does. Moreover, if

a supplier’s wholesale price is greater than the firm’s effective purchase cost from any group

of suppliers, the firm never orders from that supplier. We show that, in addition to cost and

reliability, the firm must consider the capacity dependence among selected suppliers when

deciding whether or not to order from an additional supplier. Doing so may improve the

firm’s profit by as much as 5% as demonstrated by an example.

In general, solving the firm’s sourcing and pricing problem with dependent suppliers is

extremely involved. To solve the problem, we extend the concept of the effective purchase

cost from a supplier to a group of suppliers. Then, we establish three key structural prop-

erties of the problem using the extended concept: First, the firm should always source from

the lowest-wholesale-price supplier. Second, the firm should never source from a supplier

whose wholesale price is greater than the effective purchase cost from any group of suppli-

ers. Third, changes in supplier capacity correlation does not affect the firm’s diversification

solution as long as the correlation remains “positive”. Moreover, we develop a solution

algorithm for the problem based on these properties.

The remainder of this chapter is organized as follows. In section 2.2 we review the related

literature. Section 2.3 introduces our model with several basic assumptions. In section 2.4

we analyze and solve the problem with two suppliers. In section 2.5 we study the case with

more than two suppliers. We conclude this chapter with discussion of the results in section

2.6.

2.2 Literature Review

This chapter is related to three streams of literature. One stream deals with procurement

strategies under unreliable supply while price is commonly assumed to be exogenous. Most

studies examine inventory decisions with random yield; see, for example, Yano and Lee

(1995) and Grosfeld-Nir and Gerchak (2004) for extensive reviews of the literature. Ciarallo
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et al. (1994), on the other hand, analyze random supply capacity, and they demonstrate that

in the presence of capacity uncertainty, a base-stock policy remains optimal. While these

papers focus on the procurement/production decisions with one unreliable supplier, this

chapter examine the firm’s diversification and ordering decisions with multiple unreliable

suppliers.

The advantage of supply diversification in the presence of supply uncertainty is well

established in the literature (Gerchak and Parlar 1990; Ramasesh et al. 1991; Parlar and

Wang 1993). Recent studies of a dual sourcing problem with one unreliable and one perfectly

reliable supply source include Kazaz (2004), Tomlin (2006), and Tomlin and Snyder (2007).

The scenario with multiple unreliable suppliers is investigated in Agrawal and Nahmias

(1997), Tomlin and Wang (2005), Tomlin (2009), and Wang et al. (2010).

With two or more unreliable suppliers, whose random capacities are independent, it

has been established that cost always takes precedence over reliability when it comes to

selecting suppliers, and reliability affects the order quantity from a selected supplier. In

other words, cost is the order qualifier and reliability is the order winner. Anupindi and

Akella (1993) demonstrate that it is always optimal to order some amount from the less

expensive supplier, when the initial inventory is insufficient in multi-period settings where

the supply uncertainty can be either in delivery time or delivery quantity or both. Dada

et al. (2007) establish the cost-first-reliability-second insight in a single-period setting with

more general assumptions on supply uncertainty, where the firm pays for the delivered

quantity. Federgruen and Yang (2009) demonstrate a result similar to Dada et al. (2007)

in two versions of the planning model—the service constraint model and the total cost

model—in a setting where the firm pays for each unit ordered. Burke et al. (2009) also

demonstrate a similar insight as in Dada et al. (2007). Swaminathan and Shanthikumar

(1999), on the other hand, find that in the case of discrete demand, ordering from the more

expensive supplier alone may be optimal.

We study a supply diversification problem with correlated suppliers and responsive pric-

ing. Incorporating supply dependence significantly changes the insight on the firm’s supply
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diversification decision. In particular, while the insight—cost is the order qualifier and reli-

ability is the order winner—continues to hold with two suppliers, it does not hold with more

than two suppliers. A firm must allow for the correlation structure between the suppliers’

capacities when deciding on the optimal supplier base, and should not rank suppliers purely

based on their wholesale prices in its sourcing decision.

The second stream of literature related to this chapter focuses on inventory models with

price-dependent demands. Most of the operations management literature, dealing with pric-

ing in inventory/capacity management, focuses on a single product with perfectly reliable

supply. The initial work on endogenous pricing in inventory/capacity models was done

by Whitin (1955) and Mills (1959, 1962). Comprehensive reviews of the newsvendor-type

models with endogenous pricing are provided by Porteus (1990) and Petruzzi and Dada

(1999). Boyaci and Ozer (2010) studies the effect of pricing and information acquisition

in production/capacity planning problems. Li and Zheng (2006) address joint pricing and

inventory decisions in the presence of yield uncertainty, and show that the optimal inven-

tory replenishment is characterized by a threshold value. Feng (2010), on the other hand,

investigates dynamic pricing and replenishment decisions in the presence of supply capacity

uncertainty, and show that the base-stock list-price policy fails to achieve optimality even

under deterministic demand.

Only a few papers have studied a firm’s sourcing problem with multiple unreliable sup-

pliers and a price-dependent demand. Tang and Yin (2007) study the benefits of responsive

pricing for a firm with supply uncertainty and address the issue of order allocation among

multiple unreliable suppliers. Feng and Shi (2012) study dynamic responsive pricing with

multiple suppliers, random capacity, and stochastic linear demand. They demonstrate that

the cost-first-reliability-second insight is no longer valid for general random capacity dis-

tributions when price can be adjusted dynamically. Li et al. (2012b) study the impact of

pricing power on a firm’s sourcing decisions. One major difference between our work and

the previous research is that we assume the suppliers’ capacities to be dependent. We focus

on the impact of supplier correlation on a firm’s sourcing decisions in this chapter.
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The third stream of literature related to this chapter focuses on the effects of supplier

correlation. While Dada et al. (2007) and Federgruen and Yang (2009) discuss how their

results might be extended to cases with correlated supply capacities, only Babich et al.

(2007), to the best of our knowledge, have studied the impact of supplier correlation on a

firm’s sourcing decision. They demonstrate that a firm may benefit from high supplier de-

fault correlations because low supplier default correlations may dampen competition among

the suppliers. We do not consider the strategic interaction between the suppliers and the

firm; however, we model the supplier dependence in a more general way. Moreover, we

consider the firm’s demand to be price dependent.

2.3 Model

Consider a risk-neutral firm that may order parts from N suppliers and sells products using

those parts in the market in a single selling season. The firm uses the strategy of responsive

pricing, i.e., it determines the retail price after it knows the quantity of the delivered parts.

The suppliers differ from one another in terms of their capacity distributions as well as their

wholesale prices. If a supplier can meet fully the firm’s order regardless of the order size,

then he is perfectly reliable. Otherwise, he is unreliable. Supplier i (i = 1, 2, . . . , N), when

unreliable, has a random capacity Ri that is exogenously given; if supplier i is perfectly

reliable, then we have the special deterministic case with Ri ≡ ∞. We assume that Ri has

the cumulative distribution function (cdf) Gi(r) and the corresponding probability density

function (pdf) gi(r) > 0 for r > 0. Let Gi(r) ≡ 1 − Gi(r). If the suppliers’ capacities are

dependent, then their capacities are characterized by a joint probability density function

g(r1, r2, . . . , rN).

The selling season consists of two stages. In the first stage, the firm orders a quantity Qi

from supplier i at the wholesale price of ci, and receives the quantity Si(Qi) = min{Qi, Ri}.
Denote Q ≡ (Q1, Q2, . . . , QN) as the vector of order quantities. Let Q = Q1 + · · · + QN

denote the total order quantity and S(Q) = S1(Q1)+· · ·+SN(QN) denote the total delivered
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quantity. The firm pays a supplier only for the quantity delivered. In the second stage, based

on the total delivered quantity S(Q), the firm decides the unit retail price p for the product.

We assume the demand to be deterministic and price-dependent according to an additive

form, that is, D(p) = a− bp, where a > 0 is the potential market size and b > 0 is the price

sensitivity of the demand. To ensure that the firm is able to make a positive profit and

avoid trivial cases, we assume that ci < a/b. This chapter assumes holdback rather than

clearance, and thus, there could be unsold units. The firm may salvage unsold products in

a secondary market at a unit price γ < ci. The cost of lost goodwill is δ for each unit of

unfulfilled demand.

The firm’s objective is to choose the order quantities Q in the first stage and the retail

price p in the second stage to maximize its expected profit Π (Q), which is equal to its

expected second-stage profit E[Π2 (Q)] less its expected purchase cost in the first stage.

The firm’s problem is:

max
Q>0

{
Π (Q) = E

[
Π2 (Q)−

N∑
i=1

ciSi(Qi)

]}
, (2.1)

where Π2 (Q) = max
p>0

π(p) = max
p>0

{p ·min{D(p), S(Q)}
+γ · (S(Q)−D(p))+ −δ · (D(p)− S(Q))+

}
. (2.2)

In this formulation, the firm’s second-stage profit is equal to the sum of its sales and salvage

revenues if there are leftover products, or equal to its sales revenue less the shortage cost

if there are shortages. Before we proceed, we first solve the firm’s second-stage problem to

obtain the retail price p that maximizes its profit for a given total supply S. From (2.2), we

know that the firm’s second-stage problem can be formulated as:

max
p>0

{
π(p) = p ·min{D(p), S}+ γ · (S −D(p))+ − δ · (D(p)− S)+

}
. (2.3)

Theorem 2.3.1 For a given S, the optimal retail price is

p∗ =





a + γb

2b
, if S > a− γb

2
,

a− S

b
, otherwise.
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Proof of Theorem 2.3.1. The proof is based on the easily provable facts that π(p) is

increasing for p < (a − S)/b, and (a + γb)/2b is the solution of π′(p) = 0 with π′′(p) < 0,

p > (a− S)/b.

That is, the firm sets the price so as to sell all when the total delivery is less than (a−γb)/2.

Otherwise, the firm sets the price at (a + γb)/2b and salvages the leftover products. Since

any quantity delivered in excess of A ≡ (a − γb)/2 will be salvaged, we refer to A as the

abundant supply. Throughout this chapter, we will utilize the marginal analysis to better

understand the firm’s optimal decision. We denote MR as the marginal revenue and MC

as the marginal cost. By Theorem 2.3.1, for a given total delivery quantity S, the marginal

revenue is

MR =





γ, if S > A,

a− 2S

b
, otherwise.

(2.4)

Note that when the delivery quantity is greater than the abundant supply, the additional

unit will be salvaged at γ; consequently, the marginal revenue is γ.

We proceed now to the firm’s first-stage problem. Let fQ(s) be the density of the

random variable S given Q. By (2.1) and Theorem 2.3.1, the firm’s first-stage problem can

be formulated as:

max
Q>0

{
Π(Q) =

∫ A

0

s(a− s)

b
fQ(s)ds +

∫ ∞

A

[
a2 − (γb)2

4b
+

γ(2s− a + γb)

2

]
fQ(s)ds

−
N∑

i=1

ci

[∫ Qi

0

rdGi(r) + QiGi(Qi)

]
. (2.5)

On the right-hand side of (2.5), the first term is the expected sales revenue when the total

delivery is less than the abundant supply. The second term is the expected sales revenue

plus the salvage revenue when the total delivery is greater than the abundant supply. The

last term is the total expected purchase cost.
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2.4 Two Suppliers

We first solve the single unreliable supplier problem as a building block. Let i = 1 be the

only unreliable supplier. Obviously, it is never optimal to order more than the abundant

supply. When the order quantity is less than the abundant supply, the marginal revenue

MR = (a − 2Q1)G1(Q1)/b and the marginal cost MC = c1G1(Q1). Note that both the

marginal revenue and the marginal cost are adjusted by the term G1(Q1). Intuitively, only

when the random capacity is greater than the order quantity, does an increase in the order

quantity yield a positive marginal revenue and a positive marginal cost; otherwise, both

marginals are zero. By setting MR=MC, we easily see that when the firm orders only from

supplier i = 1, the optimal order quantity is (a − bc1)/2. This result is consistent with

Ciarallo et al. (1994) in that the optimal order quantity does not depend on the supplier’s

reliability.

In order to solve the two-supplier problem (now i = 1, 2), we divide the positive (Q1, Q2)

quadrant into five regions, according to the expressions for the expected profit function in

(2.5). These regions are: Region I: Q1 > 0, Q2 > 0, Q1 + Q2 6 A; Region II: Q1 + Q2 >

A,Q1 6 A,Q2 6 A; Region III: 0 6 Q1 6 A,Q2 > A; Region IV: 0 6 Q2 6 A,Q1 > A;

Region V: Q1 > A,Q2 > A. From the fact that the capacities are unreliable and Theorem

2.3.1, clearly, the optimal order quantities fall in either Region I or Region II. Consequently,

finding the firm’s optimal ordering decisions requires us to solve problem (2.5) in these two

regions and then select the best.

Denote (Q1, Q2) as the solutions to the first-order condition for maximizing the profit

function in Region I:

[a− bci − 2 (Q1 + Q2)] Gi(Qi) + 2

∫ Q3−i

0

∫ ∞

Qi

(Q3−i − r3−i)g(r1, r2)dridr3−i = 0, for i = 1, 2.

(2.6)

Equation (2.6) can be interpreted by using marginal analysis. In Region I, if supplier i’s

random capacity ri turns out to be less than his order quantity Qi, then the firm’s marginal
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revenue and cost from this supplier are both zero. On the other hand, conditional on the

full delivery of supplier i, the firm’s marginal cost from supplier i is ci, and its marginal

revenue from supplier i depends on the realization of supplier (3− i)’s capacity r3−i. If the

random capacity turns out to be greater than the order quantity for supplier (3 − i), then

the total delivery is Q1 +Q2 and the marginal revenue is (a− 2(Q1 +Q2))/b; otherwise, the

total delivery is Qi + r3−i and the marginal revenue is (a − 2(Qi + r3−i))/b. Equating the

expected marginal revenue and the expected marginal cost yields equation (2.6). Denote

Q̂i (i = 1, 2) as the solutions to the first-order condition for maximizing the profit function

in Region II:
∫ ∞

Qi

∫ A−Qi

0

2 (A− (Qi + r3−i)) g(r1, r2)dr3−idri − b(ci − γ)Gi(Qi) = 0, for i = 1, 2. (2.7)

Equation (2.7) can also be interpreted by using marginal analysis. In Region II, if supplier

i’s random capacity ri turns out to be less than Qi, then the firm’s marginal revenue and

cost are both zero. On the other hand, conditional on the full delivery of supplier i, the

firm’s marginal cost is ci, and the firm’s marginal revenue depends on the realization of

supplier (3 − i)’s capacity r3−i. If the random capacity of supplier (3 − i) turns out to be

larger than A−Qi, then the total delivery will exceed the abundant supply and the marginal

revenue will be γ; otherwise, the total delivery is Qi + r3−i and the marginal revenue will be

(a − 2(Qi + r3−i))/b. Equating the expected marginal revenue and the expected marginal

cost yields equation (2.7).

Define hi(·) = gi(·)/(1 − Gi(·)) as the hazard rate function of Ri. To ensure that the

profit function is unimodal, we make some assumptions specified in the following lemma.

Lemma 2.4.1 For i = 1, 2, assume that (Q1, Q2) satisfies the unimodality conditions

∫ Q3−i

0

{
(Q3−i − r3−i)g(xi) +

∫ ∞

Qi

[1− hi(Qi)(Q3−i − r3−i)]g(r1, r2)dri

}
dr3−i > 0 (2.8)

and that (Q̂1, Q̂2) satisfies the unimodality conditions

∫ A−Q̂i

0

{(
A− Q̂i − rj

)
g(xi) +

∫ ∞

Q̂i

[
1− hi(Q̂i)

(
A− Q̂i − rj

)]
g(r1, r2)dri

}
drj > 0,(2.9)
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where x1 = (Q̂1, r2) and x2 = (r1, Q̂2). Then the profit function in (2.5) is unimodal.

Proof of Lemma 2.4.1. The proof can be found in the proof of Theorem 2.4.3.

The unimodality conditions in Lemma 2.4.1 ensure the unimodality of the firm’s ex-

pected profit function. Verifying these conditions requires solving the first-order conditions

(2.6) and (2.7). Next, we provide several sufficient conditions, under which the unimodal-

ity conditions hold a priori. Before we proceed, we first present some concepts used in

multivariate analysis.

For a univariate distribution function F with density f and survival function F = 1−F ,

the ratio h = f/F is known as the hazard rate. For a random vector (T1, ..., Tn), define

the joint survival function F as F (t) = P{T1 > t1, ..., Tn > tn}, where t = (t1, ..., tn). The

hazard function is defined as R = − log F . If R has a gradient h = ∇R, we call h the hazard

gradient. Note that hi(t) can be interpreted as the conditional hazard rate of Ti evaluated

at ti, given Tj > tj for all j 6= i. That is, hi(t) = fi(ti | Tj > tj, j 6= i)/F i(ti | Tj > tj, j 6= i),

where fi(· | Tj > tj, j 6= i) and F i(· | Tj > tj, j 6= i) are, respectively, the conditional density

and survival functions of Ti, given Tj > tj for all j 6= i. Refer to Johnson and Kotz (1975)

and Marshall (1975) for details.

Random variables T1, ..., Tn are associated if Cov[f(T), g(T)] > 0 for all nondecreasing

functions f and g for which Ef(T), Eg(T), Ef(T)g(T) exist, where T = (T1, ..., Tn) (Esary

et al. 1967). The notion of association among random variables is just one among many

notions of multivariate dependence. Next, we present several alternative notions of positive

dependence which imply association. In application, it is often easier to verify one of these

alternative notions. For our purpose, we present the definitions in the bivariate case only;

for more in-depth discussions on these concepts, see Barlow and Proschan (1975, Sec. 5.4).

Given random variable S and T , (a) T is right tail increasing in S, i.e. RTI(T | S), if

P [T > t | S > s] is increasing in s for all t; (b) S and T are right-corner-set increasing, i.e.,

RCSI(S, T ), if P [S > s, T > t | S > s′, T > t′] is increasing in s′ and t′ for each fixed s, t;

(c) S and T are TP2(S, T ), if the joint probability density f(s, t) is totally positive of order
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2, that is, f(s1, t1)f(s2, t2) > f(s1, t2)f(s2, t1) for all s1 < s2, t1 < t2 in the domain of S

and T . With these preliminary concepts, we present Lemma 2.4.2, which provides several

sufficient conditions under which the unimodality conditions in Lemma 2.4.1 hold.

Lemma 2.4.2 A bivariate capacity distribution satisfies the unimodality conditions (2.8)

and (2.9) if any of the following conditions is satisfied:

(i) For i = 1, 2, any Qi ∈ [0, A] satisfies

∫ Q3−i

0

{
(Q3−i − r3−i)g(xi) +

∫ ∞

Qi

[1− hi(Qi)(Q3−i − r3−i)]g(r1, r2)dri

}
dr3−i > 0,

where x1 = (Q1, r2) and x2 = (r1, Q2).

(ii) For i = 1, 2, hi(Qi) + h3−i(Q1, Q2) > hi(Q1, Q2).

(iii) For i = 1, 2, the distribution satisfies RTI(Ri | R3−i).

(iv) The distribution satisfies RCSI(R1, R2).

(v) The distribution satisfies TP2(R1, R2).

(vi) The distribution is a bivariate normal distribution with ρ > 0.

The conditions become stronger as we go down the list.

Proof of Lemma 2.4.2. (i)⇒ unimodality conditions: By the proof of Theorem 2.4.3, any

(Q1, Q2) solving H1
1 (Q1, Q2) = H1

2 (Q1, Q2) = 0 and any Q1 solving H2
1 (Q1) = 0 satisfies the

property that Q1 ∈ [0, A]. When Q1 ∈ [0, A] and we fix Q2 = A−Q1, then Q2 ∈ [0, A]. It

follows that

∫ Q2

0

(Q2 − r2)g(Q1, r2)dr2 +

∫ Q2

0

∫ ∞

Q1

[1 − h1(Q1)(Q2 − r2)]g(r1, r2)dr1dr2 > 0

becomes

∫ A−Q1

0

(A−Q1−r2)g(Q1, r2)dr2+

∫ A−Q1

0

∫ ∞

Q1

[1− h1(Q1)(A−Q1 − r2)] g(r1, r2)dr1dr2 > 0.

A similar proof works for the implication in the other direction.

(ii)⇒(i): Define Θ(Q2 | Q1) ≡
∫ Q2

0

(Q2 − r2)g(Q1, r2)dr2 +

∫ Q2

0

∫ ∞

Q1

[1 − h1(Q1)(Q2 −
r2)]g(r1, r2)dr1dr2. Then Θ(0 | Q1) = 0, and Θ(Q2 | Q1) > 0 if ∂Θ(Q2 | Q1)/∂Q2 > 0, that
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is,
∫∞

Q1
g(r1, Q2)dr1∫∞

Q2

∫∞
Q1

g(r1, r2)dr1dr2

+ h1(Q1) >
∫∞

Q2
g(Q1, r2)dr2∫∞

Q2

∫∞
Q1

g(r1, r2)dr1dr2

. (2.10)

Similarly, we can prove the other direction. From the definition of the hazard gradient,

then (2.10) is equivalent to condition (ii).

(iii)⇒(ii): Obviously, a sufficient condition for h1(Q1) + h2(Q1, Q2) > h1(Q1, Q2) is

h1(Q1) > h1(Q1, Q2). From Theorem 2.1 of Karia and Deshpande (1999), for any Q1 and

Q2, h1(Q1) > h1(Q1, Q2) ⇔ RTI(R2 | R1). So, RTI(R1 | R2) is a sufficient condition for

h1(Q1) + h2(Q1, Q2) > h1(Q1, Q2). The other direction can be proved similarly.

(vi)⇒(v)⇒(iv)⇒(iii): It follows from the facts that TP2(R1, R2) ⇒ RCSI(R1, R2) ⇒
RTI(Ri | R3−i) and a bivariate normal distribution with ρ > 0 is TP2 (Barlow and Proschan

1975).

Lemma 2.4.2 allows us to identify associated distributions, including positively correlated

bivariate distributions, that satisfy the unimodality conditions. Associated distributions

may arise from the effects of such factors as weather, economy, raw material supply, and

government policy on each supplier’s capacity. Consider the case of a firm which sources auto

parts from Japan through multiple suppliers. The capacity of each supplier is affected by the

earthquake on March 11. As a result, we expect their capacities to be “positively” correlated

and satisfy the conditions in Lemma 2.4.2. Similarly, the weather has a huge impact on the

capacities of agricultural product suppliers. When such suppliers are located in the same

geographic area, their capacity distributions are expected to satisfy those conditions as well.

Throughout this section, we assume that the unimodality conditions hold.

To facilitate the analysis, we define the (unit) effective purchase cost from supplier i

expressed as a function of his wholesale price c as

Ci = Ci(c) ≡ c +

∫ a−bc
2

0

(
a− 2r

b
− c

)
dGi(r). (2.11)

Thus, the effective purchase cost Ci(ci) from supplier i consists of his wholesale price ci

and the unit imputed cost of his unreliability. The latter cost, termed the unreliability
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cost of supplier i, kicks in only if he is unable to deliver the optimal ordered quantity

(a− bci)/2 derived for the one-supplier case, and it is equal to the marginal profit that the

firm would make if he could deliver one additional unit. With each unit increase in the

realized capacity of supplier i, the firm’s profit increases by (a − 2r)/b − ci. The expected

unit cost of unreliability is easily seen to be the integral term in (2.11). Furthermore, the

effective purchase cost from supplier i is increasing and convex in his wholesale price. We

can now characterize the firm’s optimal order quantities by the following theorem.

Theorem 2.4.3 The firm’s optimal order quantities are 2





Q∗
1 = (a− bc1)/2, Q

∗
2 = 0, if c2 > C1,

Q∗
1 = 0, Q∗

2 = (a− bc2)/2, if c1 > C2,

Q∗
1 = Q1, Q

∗
2 = Q2, if c1 < C2 and c2 < C1 and Q̂1(c1) + Q̂2(c2) 6 A,

Q∗
1 = Q̂1, Q

∗
2 = Q̂2, otherwise.

Proof of Theorem 2.4.3. Follows from Lemmas 2.4.4-2.4.7.

Let Ψ1(x, y) ≡ (x+y)(a−(x+y))/b and Ψ2(x, y) ≡ [a2−(γb)2]/4b+[γ(2(x+y)−a+γb)]/2.

Lemma 2.4.4 The unique optimal order quantities (Q∗
1, Q

∗
2) satisfy




Q∗
1 = (a− bc1)/2, Q

∗
2 = 0, if c2 > C1(c1),

Q∗
1 = 0, Q∗

2 = (a− bc2)/2, if c1 > C2(c2),

Q∗
1 = Q1, Q

∗
2 = Q2, if C−1

2 (c1) < c2 < C1(c1) and Q1(c1) + Q2(c2) 6 A,

(Q∗
1, Q

∗
2) are in Region II, otherwise.

(2.12)

Proof of Lemma 2.4.4. Region I: Q1 > 0, Q2 > 0, Q1 +Q2 6 A. In this region, the second

term of (2.5) disappears, and the expected profit function becomes

Π(Q1, Q2) =

∫ Q1

0

∫ Q2

0

Ψ1(r1, r2)g(r1, r2)dr2dr1 +

∫ ∞

Q1

∫ ∞

Q2

Ψ1(Q1, Q2)g(r1, r2)dr2dr1

+

∫ Q1

0

∫ ∞

Q2

Ψ1(r1, Q2)g(r1, r2)dr2dr1 +

∫ Q2

0

∫ ∞

Q1

Ψ1(Q1, r2)g(r1, r2)dr2dr1

−c1

[∫ Q1

0

r1g1(r1)dr1 + Q1G1(Q1)

]
− c2

[∫ Q2

0

r2g2(r2)dr2 + Q2G2(Q2)

]
.

2In the remainder of the chapter, we sometimes write Q̂i as Q̂i(ci) for i = 1, 2 to emphasize the depen-
dence of Q̂i on ci. Similarly, we write Qi as Qi(ci), for i = 1, 2.
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For i = 1, 2, let

H1
i (Q1, Q2) ≡ b

∂Π(Q1, Q2)

∂Qi

= (a− bci − 2(Q1 + Q2))Gi(Qi) + 2

∫ Q3−i

0

∫ ∞

Qi

(Q3−i − r3−i)g(r1, r2)dridr3−i.

Next, we analyze the curves H1
i (Q1, Q2) = 0 in the (Q1, Q2)-plane illustrated in Figure 2.1

plotted for c1 > c2. Applying the implicit function theorem to H1
1 (Q1, Q2) = 0 gives

dQ1

dQ2

=
2
∫∞

Q2

∫∞
Q1

g(r1, r2)dr1dr2

−2G1(Q1)− g1(Q1)[a− bc1 − 2(Q1 + Q2)]− 2
∫ Q2

0
(Q2 − r2)g(Q1, r2)dr2

.

By the unimodality conditions, for any points on the curve H1
1 (Q1, Q2) = 0, we have∫ Q2

0

(Q2−r2)g(Q1, r2)dr2+

∫ Q2

0

∫ ∞

Q1

[1−h1(Q1)(Q2−r2)]g(r1, r2)dr1dr2 > 0. By H1
1 (Q1, Q2) =

0,

∫ Q2

0

∫ ∞

Q1

(Q2 − r2)g(r1, r2)dr1dr2 = −1

2
(a − bc1 − 2(Q1 + Q2))G1(Q1). Thus, 2G1(Q1) +

g1(Q1)[a− bc1 − 2(Q1 + Q2)] + 2

∫ Q2

0

(Q2 − r2)g(Q1, r2)dr2 > 2

∫ ∞

Q2

∫ ∞

Q1

g(r1, r2)dr1dr2. So,

on the curve H1
1 (Q1, Q2) = 0, −1 6 dQ1/dQ2 < 0; furthermore, ((a− bc1)/2, 0) and (0, Q̃2)

lie on the curve, where
∫ Q̃2

0
G2(r2)dr2 = (a− bc1)/2 < Q̃2.

Figure 2.1. Curves H1
1 (Q1, Q2) = 0 and H1

2 (Q1, Q2) = 0 if c1 > c2

By symmetry, on curve H1
2 (Q1, Q2) = 0, −1 6 dQ2/dQ1 < 0; furthermore, ((0, (a −

bc2)/2) and (Q̃1, 0) lie on the curve, where
∫ Q̃1

0
G1(r1)dr1 = (a− bc2)/2 < Q̃1.
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If c1 > c2, then Q̃1 > (a − bc2)/2 > (a − bc1)/2. Thus, only if Q̃2 > (a − bc2)/2, then

there exists a unique interior solution for H1
1 (Q1, Q2) = 0 and H1

2 (Q1, Q2) = 0. Otherwise,

there is no interior solution. It can be easily verified that Q̃2 > (a− bc2)/2 is equivalent to

c1 < C2(c2). So, when c2 < c1 < C2(c2), the firm’s optimal order quantities are (Q1, Q2),

the unique interior solution of (2.6). When c1 > C2(c2), the optimal order quantities are

on the boundary. This means that the firm should order from the low-cost supplier alone.

When c1 6 c2 < C1(c1), the proof is similar. Notice that the sum of Q1 and Q2 may be

greater than A. We will show later that if Q1 + Q2 > A, then the optimal order quantities

are in Region II. In summary, the optimal order quantities are characterized by (2.12).

Next, we check the unimodality of Π(Q1, Q2). By the FOC and the unimodality condi-

tions,

∂2Π(Q1, Q2)

∂Q2
1

∣∣∣∣
Q1=Q1,Q2=Q2

= −2

b

{
G1(Q1) + g1(Q1)[

a− bc1

2
− (Q1 + Q2)] +

∫ Q2

0

(Q2 − r2)g(Q1, r2)dr2

}
< 0.

Similarly, ∂2Π(Q1,Q2)

∂Q2
2

∣∣∣
Q1=Q1,Q2=Q2

< 0. Also,

∂2Π(Q1, Q2)

∂Q1∂Q2

∣∣∣∣
Q1=Q1,Q2=Q2

=
∂2Π(Q1, Q2)

∂Q2∂Q1

∣∣∣∣
Q1=Q1,Q2=Q2

= −2

b

∫ ∞

Q2

∫ ∞

Q1

g(r1, r2)dr1dr2 < 0,

{
∂2Π(Q1, Q2)

∂Q2
1

· ∂2Π(Q1, Q2)

∂Q2
2

− ∂2Π(Q1, Q2)

∂Q1∂Q2

· ∂2Π(Q1, Q2)

∂Q2∂Q1

}∣∣∣∣
Q1=Q1,Q2=Q2

> 0.

So, if there exists an interior optimal solution, the Hessian at the optimal point is negative

definite. Thus, the profit function is jointly unimodal and it is maximized at the optimal

point. Note that when the Hessian of a bivariate function is negative definite at all local

optimal points, the function is directionally unimodal, which implies joint unimodality.

Wang (2008) established the joint unimodality of the profit function with dual sourcing

using the structural properties of the profit function.



www.manaraa.com

21

Lemma 2.4.5 The unique optimal order quantities satisfy





Q∗
1 = Q̂1, Q

∗
2 = Q̂2, if Q̂1(c1) + Q̂2(c2) > A,

(Q∗
1, Q

∗
2) are in Region I, otherwise.

(2.13)

Proof of Lemma 2.4.5. Region II: Q1 + Q2 > A, Q1 6 A,Q2 6 A. The expected profit

function

Π(Q1, Q2) =

∫ A−Q2

0

∫ Q2

0

Ψ1(r1, r2)g(r1, r2)dr2dr1 +

∫ Q1

A−Q2

∫ A−r1

0

Ψ1(r1, r2)g(r1, r2)dr2dr1

+

∫ Q1

A−Q2

∫ Q2

A−r1

Ψ2(r1, r2)g(r1, r2)dr2dr1 +

∫ A−Q2

0

∫ ∞

Q2

Ψ1(r1, Q2)g(r1, r2)dr2dr1

+

∫ Q1

A−Q2

∫ ∞

Q2

Ψ2(r1, Q2)g(r1, r2)dr2dr1 +

∫ A−Q1

0

∫ ∞

Q1

Ψ1(Q1, r2)g(r1, r2)dr1dr2

+

∫ Q2

A−Q1

∫ ∞

Q1

Ψ2(Q1, r2)g(r1, r2)dr1dr2 +

∫ ∞

Q1

∫ ∞

Q2

Ψ2(Q1, Q2)g(r1, r2)dr2dr1

−c1

[∫ Q1

0

r1g1(r1)dr1 + Q1G1(Q1)

]
− c2

[∫ Q2

0

r2g2(r2)dr2 + Q2G2(Q2)

]
.

For i = 1, 2, let

H2
i (Qi) ≡ b

∂Π(Q1, Q2)

∂Qi

=

∫ ∞

Qi

∫ A−Qi

0

2(A− (Qi + r3−i))g(r1, r2)dr3−idri − b(ci − γ)Gi(Qi).

Let Q̂i be the solution of H2
i (Qi) = 0. Because Q̂i ∈ (0, A), (Q̂1, Q̂2) are in Region I or II. If

(Q̂1, Q̂2) are in Region II, then they are the optimal order quantities in Region II. Otherwise,

the optimal order quantities for the firm will be in Region I, which will be proved later. In

summary, the optimal order quantities are characterized by (2.13).

Next, we check the unimodality of Π(Q1, Q2). By the FOC and the unimodality condi-

tions,

∂2Π(Q1, Q2)

∂Q2
1

∣∣∣∣
Q1=Q̂1,Q2=Q̂2

= −2

b

∫ A−Q̂1

0

∫ ∞

Q̂1

g(r1, r2)dr1dr2 + (c1 − γ)g1(Q̂1)

−1

b

∫ A−Q̂1

0

(a− γb− 2Q̂1 − 2r2)g(Q̂1, r2)dr2 < 0,
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Similarly, ∂2Π(Q1,Q2)

∂Q2
2

∣∣∣
Q1=Q̂1,Q2=Q̂2

< 0, ∂2Π(Q1,Q2)
∂Q1∂Q2

∣∣∣
Q1=Q̂1,Q2=Q̂2

= ∂2Π(Q1,Q2)
∂Q2∂Q1

∣∣∣
Q1=Q̂1,Q2=Q̂2

= 0,

and

{
∂2Π(Q1, Q2)

∂Q2
1

· ∂2Π(Q1, Q2)

∂Q2
2

− ∂2Π(Q1, Q2)

∂Q1∂Q2

· ∂2Π(Q1, Q2)

∂Q2∂Q1

}∣∣∣∣
Q1=Q̂1,Q2=Q̂2

> 0.

Thus, if there exists an interior optimal solution, then the Hessian at the optimal point is

negative definite. Thus, the profit function is jointly unimodal and it is maximized at the

optimal point.

Lemma 2.4.6 (i) Q1(c1)+Q2(c2) = A ⇔ Q̂1(c1)+ Q̂2(c2) = A; (ii) Q1(c1)+Q2(c2) > A ⇔
Q̂1(c1) + Q̂2(c2) > A; (iii) Q1(c1) + Q2(c2) < A ⇔ Q̂1(c1) + Q̂2(c2) < A.

Proof of Lemma 2.4.6. (i) “ ⇒ ”. Suppose Q1(c1) + Q2(c2) = A. By H1
1 (Q1, Q2) = 0,

∫∞
Q1

∫ A−Q1

0
(a − γb − 2(Q1 + r2))g(r1, r2)dr2dr1 − b(c1 − γ)G1(Q1) = 0. By H2

1 (Q̂1) = 0,
∫ ∞

Q̂1

∫ A−Q̂1

0

(a− γb− 2(Q̂1 + r2))g(r1, r2)dr2dr1 − b(c1 − γ)G1(Q̂1) = 0. Since Π(Q1, Q2) in

Region II is unimodal, Q1 = Q̂1. Similarly, Q2 = Q̂2. Consequently, Q̂1(c1) + Q̂2(c2) = A.

(ii) “ ⇒ ”. Assume Q1(c1) + Q2(c2) > A, that is, Q2 > A−Q1. Since H1
1 (Q1, Q2) = 0,

and ∂H1
1 (Q1, Q2)/∂Q2 < 0, we can conclude that H1

1 (Q1, A − Q1) > 0. Since H2
1 (Q̂1) = 0

and H2
1 (Q1) is unimodal, Q1 < Q̂1. Similarly, Q2 < Q̂2. Thus, Q̂1(c1) + Q̂2(c2) > Q1(c1) +

Q2(c2) > A.

(iii) “ ⇒ ”. Interchanging < and > in the last proof gives the result.

(i)(ii)(iii) “ ⇐ ”. From the “ ⇒ ” in (i),(ii), and (iii), we can prove “ ⇐ ” by contradic-

tion.

Lemma 2.4.7 There exists a unique pair of optimal order quantities for the firm.

Proof of Lemma 2.4.7. It is completed by proving the following three claims.

Claim 1: When c1 > C2(γ) or c2 > C1(γ), the optimal order quantity is in Region I:

Since Π(Q1, Q2) in Region II is unimodal, to have an interior optimal solution, we must
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have H2
1 (0) > 0 ⇔ c1 < C2(γ). Otherwise, H2

1 (Q1) < 0 for any Q1 ∈ (0, A]. That is, the

optimal solution in Region II is a boundary solution Q1 + Q2 = A. So the optimal order

quantity is in Region I. By symmetry, if c2 > C1(γ), the optimal order quantity is in Region

I.

Claim 2: When c1 < C2(γ), c2 < C1(γ), and Q̂1 + Q̂2 6 A, the optimal order quantity

is in Region I: If c1 < C2(γ), then, H2
1 (0) > 0. Since H2

1 (A) = b(γ − c1)G1(A) < 0, there

exists a unique point Q̂1 ∈ (0, A) such that H2
1 (Q̂1) = 0. By Symmetry, if c2 < C1(γ), then

there exists a unique point Q̂2 ∈ (0, A) such that H2
2 (Q̂2) = 0. However, if Q̂1 + Q̂2 6 A,

then for any point in Region II with Q1 > Q̂1, H2
1 (Q1) < 0; and for any point in Region II

with Q2 > Q̂2, H2
2 (Q2) < 0. These two conditions include all the points in Region II. Thus

the optimal solution in Region II is a boundary solution on Q1 + Q2 = A. So the optimal

order quantity is in Region I.

Claim 3: When c1 < C2(γ), c2 < C1(γ), and Q̂1 + Q̂2 > A, the optimal order quantity

is in Region II: By Lemma 2.4.6, when Q̂1 +Q̂2 > A, Q1 +Q2 > A. Since the profit function

in Region I is unimodal, then for any point in Region I with Q1 < Q1, H1
1 (Q1, Q2) > 0;

and for any point in Region I with Q2 < Q2, H1
2 (Q1, Q2) > 0. These two conditions include

all the points in Region I. Thus, the optimal solution in Region I is a boundary solution

Q1 + Q2 = A. So the optimal order quantity is in Region II.

Figure 2.2 illustrates Theorem 2.4.3 and demonstrates how the changes in the wholesale

prices affect the firm’s optimal diversification decision. The feasible area for the whole-

sale prices is divided into two zones: Dedication (Single-sourcing) Zone and Diversification

(Dual-sourcing) Zone. Dedication Zone consists of two areas: I(1) and I(2), where the firm

orders only from supplier 1 or supplier 2, respectively. Diversification Zone, where the firm

orders from both suppliers, is subdivided into Diversification Zones II(a) and II(b), where

the total order quantity is above or below, respectively, the abundant supply. Moreover, the

optimal order quantities in Diversification Zones II(a) and II(b) are characterized by (2.6)
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Figure 2.2. Optimal Diversification Decision with Two Dependent Unreliable Suppliers

and (2.7), respectively.

According to Theorem 2.4.3, when a supplier’s wholesale price is higher than the effective

purchase cost from his rival, the firm should not diversify, and order only from the latter.

In other words, even if the supplier with a higher wholesale price is perfectly reliable or his

capacity is correlated to his rival’s capacity, he may not get any order if his wholesale price

is too high. On the other hand, the supplier with a lower wholesale price always get an

order from the firm. Therefore, the first part of the insight, i.e., cost is the order qualifier,

continues to hold in the two-dependent-supplier case.

Note that Diversification Zone is fully characterized by the marginal distribution of each

supplier’s capacity and is not affected by their correlation. That is, whether the firm should

diversify or not does not depend on the correlation between the two suppliers’ capacities.

However, the capacity correlation does affect the firm’s optimal order quantities. To study

the capacity correlation effect, we first present the concept of the supermodular order. A

random vector X is said to be greater than another random vector Y in the supermod-

ular order if E[f(X)] > E[f(Y )] holds for all supermodular functions f(·), provided the
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expectations exist; see, for example, Shaked and Shanthikumar (2007, Sec. 9.A.4) for more

discussions on the supermodular order.

Lemma 2.4.8 (i) The firm’s Diversification Zone is independent of the capacity correlation;

(ii) In Diversification Zone II(b), the firm’s optimal total order quantity decreases as the

capacity correlation increases in the sense of the supermodular order. (iii) In Diversification

Zone II(a), the firm’s optimal order quantity for each supplier decreases as the capacity

correlation increases in the sense of the supermodular order.

Proof of Lemma 2.4.8. The proof consists of proving three claims: (i) Ci(ci) is indepen-

dent of the capacity correlation; (ii) Q1 +Q2 decreases as correlation increases; (iii) (Q̂1, Q̂2)

decreases as correlation increases. The proof of (i) is trivial. To prove (ii), we first analyze

how H1
1 (Q1, Q2) changes w.r.t. the capacity correlation. Define

φ1(r1, r2) ≡





Q2 − r2, if 0 6 r2 6 Q2, r1 > Q1,

0 , otherwise.

It can be verified that φ1(r1, r2) is a submodular function. From Shaked and Shanthikumar

(2007, 9.A.4, p.395), when the suppliers’ capacities increase in the supermodular order,

the expectation of any submodular function of (r1, r2) decreases. Thus, when the capacity

correlation increases in the sense of the supermodular order, E[φ1(r1, r2)] decreases. Note

that H1
1 (Q1, Q2) = (a−bc1−2(Q1+Q2))G1(Q1)+2E[φ1(r1, r2)]. So, for any fixed Q1 and Q2,

H1
1 (Q1, Q2) decreases as the capacity correlation increases. Since ∂H1

1 (Q1, Q2)/∂Q2 < 0,

then for any fixed Q1, Q′
2 obtained from H1

1 (Q1, Q
′
2) = 0 decreases. This means that the

curve H1
1 (Q1, Q2) = 0 in Figure 2.1 will shift downward. However, the two ending points

(0, Q̃2) and ((a − bc1)/2, 0) stay the same, because they are not related to the capacity

correlation. Also, from the proof of Lemma 2.4.4, we know that on the curve H1
1 (Q1, Q2) = 0,

−1 6 dQ1/dQ2 < 0. By symmetry, we can show that when the capacity correlation

increases, the curve H1
2 (Q1, Q2) = 0 in Figure 2.1 shifts downward as well, while the two

ending points (0, (a−bc2)/2) and (Q̃1, 0) stay the same. Also from the proof of Lemma 2.4.4,
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we know that on the curve H1
2 (Q1, Q2) = 0, −1 6 dQ2/dQ1 < 0. Consequently, when the

capacity correlation increases, the crossing point of H1
1 (Q1, Q2) = 0 and H1

2 (Q1, Q2) = 0,

i.e. (Q1, Q2), can only move inside the region bounded by H1
1 (Q1, Q2) = 0, H1

2 (Q1, Q2) = 0,

and Q1 + Q2 = (a− bc2)/2. In this region, the value Q1 + Q2 of any point (Q1, Q2) is less

than the original (Q1 + Q2). Thus, Q1 + Q2 decreases as the capacity correlation increases.

To prove claim (iii), we first analyze how H2
1 (Q1) changes w.r.t the capacity correlation.

Define

φ2(r1, r2) ≡





a− bγ − 2(Q1 + r2), if 0 6 r2 6 A−Q1, r1 > Q1,

0 , otherwise.

It can be verified that φ2(r1, r2) is a submodular function. Thus, when the capacity correla-

tion increases, E[φ1(r1, r2)] decreases. Note that H2
1 (Q1) = −b(c1−γ)G1(Q1)+E[φ2(r1, r2)].

So for any fixed Q1, H2
1 (Q1) decreases as the capacity correlation increases. By the uni-

modality conditions, Π(Q1, Q2) is unimodal in Region II and achieves its maximum at

(Q̂1, Q̂2). Thus, H2
1 (Q1) > 0 if Q1 > Q̂1; H2

1 (Q1) < 0 if Q1 < Q̂1. So, as the capacity corre-

lation increases, Q̂1 decreases. Similarly, as the capacity correlation increases, Q̂2 decreases.

In our computational study, we have found cases where one individual order quantity

increases as capacity correlation increases in the sense of the supermodular order in Diver-

sification Zone II(b). Lemma 2.4.8 characterizes how the capacity correlation affects the

optimal order quantities in each Diversification Zone. However, as the capacity correlation

changes, the boundary between Diversification Zone II(a) and II(b) shifts. To draw general

conclusions on how capacity correlation affects the optimal order quantities, we next analyze

the boundary {(c1, c2) : Q̂1(c1) + Q̂2(c2) = A} separating Diversification Zones II(a) and

II(b). First, we characterize its slope by applying the implicit function theorem:

dc2

dc1

= −∂Q̂1(c1)/∂c1

∂Q̂2(c2)/∂c2

= −G1(Q̂1(c1))A2

G2(Q̂2(c2))A1

6 0,



www.manaraa.com

27

where for i = 1, 2,

Ai = 2

∫ A−Q̂i(ci)

0

∫ ∞

Q̂i(ci)

g(r1, r2)dridr3−i − b(ci − γ)gi(Q̂i(ci))

+2

∫ A−Q̂i(ci)

0

(A− Q̂i(ci)− r3−i)g(yi)dr3−i > 0,

with y1 = (Q̂1(c1), r2) and y2 = (r1, Q̂2(c2)).

The nonnegativity of Ai follows from the unimodality conditions. Also, we can identify

two ending points of the boundary curve as (γ, C1(γ)) and (C2(γ), γ); see Figure 2.2 for an

illustration. Lemma 2.4.9 demonstrates how the boundary curve {(c1, c2) : Q̂1(c1)+Q̂2(c2) =

A} changes with respect to the capacity correlation.

Lemma 2.4.9 The boundary {(c1, c2) : Q̂1(c1)+ Q̂2(c2) = A} in Diversification Zone shifts

towards the point (γ, γ) as the capacity correlation increases in the sense of the supermod-

ular order, while the two ending points (γ, C1(γ)) and (C2(γ), γ) stay the same. When the

two suppliers’ capacities become perfectly positively correlated, Diversification Zone II(a)

vanishes and the optimal total order quantity becomes (a− b min{c1, c2})/2.

Proof of Lemma 2.4.9. Recall that the two ending points of the boundary curve are

not affected by the capacity correlation. To see how the curve changes w.r.t. the capacity

correlation, we fix c1 and check how c2 changes. From Proposition 2.4.8, when the capacity

correlation increases, Q̂1 decreases. Therefore, Q̂2 has to increase on the curve Q̂1+Q̂2 = A.

If c2 is fixed, then Q̂2 decreases as the capacity correlation increases. When the capacity

correlation is fixed, Q̂2 decreases as c2 increases. Thus, when the capacity correlation

increases, c2 has to decrease to have an increased Q̂2. So, when c1 is fixed, c2 will decrease

as the capacity correlation increases on the curve Q̂1 + Q̂2 = A. Similarly, when c2 is fixed,

c1 will decrease as the capacity correlation increases on the same curve.

When the two suppliers are perfectly positively correlated, r1 = r2 with probability 1.

Then, in Region II, ∂Π(Q1, Q2)/∂Q1 = 0 implies Q̂1 < A/2. Similarly, ∂Π(Q1, Q2)/∂Q2 = 0
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implies Q̂2 < A/2. Thus, Q̂1 + Q̂2 < A. From Lemma 2.4.7, we know that the optimal

order quantities are in Region I. Thus, Diversification Zone II vanishes in this case.

To show that the total order quantity satisfies Q∗
1 + Q∗

2 = (a − bc2)/2 with perfectly

correlated capacities, we assume c1 > c2 without loss of generality. Since the optimal order

quantities are in Region I, if the two suppliers are perfectly correlated. In this case, the

second term of either H1
1 (Q1, Q2) = 0 or H1

2 (Q1, Q2) = 0 becomes zero. It can be proved

by contradiction that the only possible case has H1
2 (Q1, Q2) = 0, and we can see that

Q∗
1 + Q∗

2 = (a− bc2)/2.

From Lemma 2.4.8 and 2.4.9, we obtain the following result regarding how the capacity

correlation affects the optimal order quantities.

Theorem 2.4.10 In Diversification Zone, the firm’s optimal total order quantity decreases

as the capacity correlation increases in the sense of the supermodular order.

Proof of Theorem 2.4.10. In Diversification Zone, there are three possible areas where

the point (c1, c2) representing the suppliers’ wholesale prices may reside: (i) in Zone I; (ii)

on the curve that separates Zones I and II; (iii) in Zone II. In case (i), by Lemma 2.4.9,

when the capacity correlation increases, (c1, c2) remains in the same zone. By Lemma 2.4.8,

the optimal total order quantity decreases with the capacity correlation in this Zone. In

case (ii), by Lemma 2.4.9, when the capacity correlation increases, the curve shifts so that

(c1, c2) becomes a point in the Zone I and then stay there. The total order quantity on

the curve is equal to the abundant supply and the total order quantity in Zone I is smaller

than the abundant supply. So, the optimal total order quantity decreases, and it continues

to decrease on account of Lemma 2.4.8. In case (iii), by Lemma 2.4.9, when the capacity

correlation increases, (c1, c2) first becomes a point on the curve and then it becomes a point

in Zone I. While in Zone II, the optimal total order quantity decreases with the capacity

correlation in view of Lemma 2.4.8. The total order quantity is larger than the abundant

supply in Zone II, and becomes equal when on the curve, and becomes less when in Zone I.

After the point moves onto the curve, the proof is the same as case (ii).
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Recall that the firm’s diversification decision is independent of the suppliers’ capacity

correlation. However, when the firm uses dual sourcing, the suppliers’ capacity correlation

does affect the firm’s optimal order quantities. Theorem 2.4.10 implies that suppliers should

try to differentiate from each other to reduce their capacity dependence in order to obtain

large orders from the firm. Interestingly, when the suppliers’ wholesale prices are relatively

high, the order quantity for an individual supplier may increase in the capacity correlation.

This somewhat counter-intuitive result can be explained as follows. The delivered products

from these two suppliers are substitutes. As the correlation between these two suppliers

increases, the benefit of supply diversification decreases. Therefore the firm’s total order

quantity decreases. However, when the suppliers’ wholesale prices differ significantly, as

the correlation between these two suppliers increases, the benefit of purchase cost reduction

by ordering more from the cheaper supplier dominates the benefit of supply diversification.

Consequently, the firm orders more from the cheaper supplier while reducing its order from

the more expensive supplier.

2.5 N Suppliers

In this section we consider the N -supplier case. Without loss of generality, let c1 6 c2 6
· · · 6 cN . It can be verified that, as in the two-supplier case, the optimal order quantities

must fall in the following two regions: Region I = {Q : 0 6 Qi 6 A,Q 6 A, for i =

1, 2, . . . , N} and Region II = {Q : 0 6 Qi 6 A,Q > A, for i = 1, 2, . . . , N}. Intuitively,

for any supplier i, the optimal order quantity should never exceed the abundant supply.

Suppose the firm orders Qi > A from supplier i. If supplier i’s capacity turns out to be less

than the abundant supply, then the firm can get the same profit by ordering the abundant

supply from him; if supplier i’s capacity turns out to be greater than the abundant supply,

then the firm can get more profit by ordering the abundant supply from him since the extra

units will be salvaged at γ < ci.

In each of these two regions, by using the marginal analysis similar to the two-supplier
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case, we can derive the firm’s marginal revenue and marginal cost from supplier i:

MRi =





E[a− 2S|Ri > Qi]

b
, if Q is in Region I,

E[a− 2S|Ri > Qi and S 6 A]

b
+ γ · Pr{Ri > Qi and S > A}, if Q is in Region II,

MCi = ciGi(Qi).

If supplier i’s random capacity Ri turns out to be less than his order quantity Qi,

then the firm’s marginal revenue and cost from this supplier are both zero. On the other

hand, conditional on the full delivery of supplier i, the firm’s marginal cost from supplier

i is ci, and its marginal revenue from supplier i depends on the realization of all the other

suppliers’ capacities. In Region I, based on the total delivery quantity, the marginal revenue

is (a− 2S)/b as in (2.4). In Region II, if the total delivery quantity is smaller than A, then

the marginal revenue is (a− 2S)/b; otherwise, the marginal revenue is γ.

Moreover, the optimal order quantities in these two regions must satisfy the following

KKT conditions for i = 1, . . . , n:

MRi −MCi 6 0 and (MRi −MCi)Q
∗
i = 0.

Solving the KKT conditions in Regions I and II yields (Q1, Q2, . . . , QN) and (Q̂1, Q̂2, . . . , Q̂N),

respectively, and the optimal order quantity for supplier i are

Q∗
i =





Qi, if Π(Q) > Π(Q̂),

Q̂i, otherwise .

(2.14)

However, solving for Qi or Q̂i is not easy in general for the N -supplier problem. With two

dependent suppliers, the firm can efficiently make the optimal sourcing decisions by relying

on the two key insights developed in Section 2.4: First, the firm’s diversification decision

does not depend on the supplier capacity correlation. Second, cost takes precedence over

reliability when the firm selects suppliers. These insights are consistent with the findings in

the literature that the decision to order from a particular supplier depends on that supplier’s
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cost and the other suppliers’ reliabilities (Dada et al. 2007). These insights, however, are

no longer true in the N -supplier case, as shown by the following example.

Example 2.5.1 Consider three suppliers. Assume that the marginal distribution for each

supplier’s capacity is uniform between 0 and 5. Further, Pr{R1 = R2} = 1 and Pr{R1 +

R3 = 5} = 1. That is, R1 and R2 are perfectly positively correlated, and R1 and R3 are

perfectly negatively correlated. Let a = 10, b = 1, that is, the firm’s demand function is

10−p with p denoting the retail price. In addition, assume that γ = δ = 0. In this case, when

c1 = 1.0, c2 = 2.3, c3 = 2.9, the optimal order quantities are Q∗
1 = 4, Q∗

2 = 0, Q∗
3 = 2.1 with

an expected profit of 16.1. If, on the other hand, the firm ignores the capacity dependence

among the suppliers and makes its sourcing decision based on the cost-first reliability-second

insight, the firm would source from suppliers 1 and 2 with Q1 = 3.1, Q2 = 1.7. Its expected

profit would be 15.29.

As can be seen from the example, other than supplier 1, the firm should choose to order

from supplier 3 instead of supplier 2, whose wholesale price is lower than that of supplier 3.

Consequently, in the case of N dependent suppliers, the insight that cost takes precedence

over reliability does not hold in general. Note that other researchers have obtained similar

results for cases with discrete demand distributions (Swaminathan and Shanthikumar 1999)

and dynamic pricing (Feng and Shi 2012). From the example we also see that taking into

consideration of the supply capacity dependence when making sourcing decisions improves

the firm’s profit by 5.3%. Therefore, it is important for the firm, when making sourcing

decisions, to not ignore the supply capacity dependence.

To solve the N -dependent-supplier problem efficiently, we extend the effective purchase

cost concept from one supplier to a group of Consider the firm only orders from supplier Z.

Let

CZ =





E[a− 2S∗Z ]

b
, if Q∗

Z 6 A,

E[a− 2S∗Z |S∗Z 6 A]

b
+ γ · Pr{S∗Z > A}, otherwise,

(2.15)
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be the effective purchase cost from supplier Z, where Q∗
Z is the firm’s optimal total order

quantity for supplier Z and S∗Z is the total delivery quantity after the firm making the

optimal sourcing decisions with supplier Z. The effective purchase cost, essentially, is the

price that the firm is willing to pay for an extra unit after the goods are delivered. It can

be easily verified

Next, we develop two structural properties of the firm’s optimal diversification decision.

Define the optimal sourcing set Z∗ ⊆ {1, 2, . . . , N} such that Q∗
i > 0 for any i ∈ Z∗.

Theorem 2.5.1 Consider a set Z ⊆ {1, 2, . . . , N} and its complement Zc ≡ {1, 2, . . . , N}\Z.

Let l be the smallest element and m be the largest element in Zc. (i) If CZ 6 cl, then any

subset of {Z, l, . . . ,m} except Z is not the optimal sourcing set; (ii) If cl < CZ 6 cm, there

must exist j, k ∈ Zc such that CZ > ci for all i ∈ Zc with i 6 j and CZ 6 ci for all i ∈ Zc

with i > k. Moreover, any subset of {Z, k, . . . , m} is not the optimal sourcing set; (iii)

Otherwise, Z is not the optimal sourcing set.

Proof of Theorem 2.5.1. (ii) Suppose cj < CZ 6 ck. This implies that the wholesale price

the firm is willing to pay for an extra unit is not larger than ck. Since Theorem 2.4.3 holds for

two dependent suppliers with any continuous capacity distributions, we can regard supplier

Z as a supplier with the effective purchase cost CZ . By Theorem 2.4.3, even if there exists

a perfectly reliable supplier with wholesale price ck, it is not optimal for the firm to order

from him. Therefore, it is not optimal for the firm to order from any unreliable supplier

whose wholesale price is larger than ck. Furthermore, for any combination of suppliers,

whose wholesale prices are larger than ck, regarded as one supplier, his equivalent wholesale

price will be larger than ck. To sum up, none of the subsets of {Z, k, . . . , m}\Z can be an

optimal sourcing set. Proofs of (i) and (iii) follow similarly.

Theorem 2.5.1 underlines the importance of the effective purchase cost concept. When

a supplier’s wholesale price is greater than the firm’s effective purchase cost from a group

of suppliers, this supplier will not be sourced from. However, one should note that even

when a supplier’s wholesale price is lower than the effective purchase cost from a group of
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suppliers, this supplier still may not be sourced from. Interestingly, the following theorem

points out that the lowest wholesale price is indeed an order qualifier, i.e., the firm will

always order from the supplier with the lowest wholesale price.

Theorem 2.5.2 The firm will always order from the supplier with the lowest wholesale

price.

Proof of Theorem 2.5.2. Let the firm order from a group of suppliers with indices in

Z ⊆ {1, 2, . . . , N}. Since the effective purchase cost from a supplier consists of his wholesale

price and the unit imputed cost of his unreliability, the effective purchase cost from any

unreliable supplier must be greater than his wholesale price. For a group of suppliers,

the equivalent wholesale price must be greater than the lowest wholesale price among the

suppliers in the group. Therefore, the effective purchase cost from a group of suppliers

must be greater than the lowest wholesale price among the suppliers in the group. That

is, CZ > ci, where i is the smallest number in set Z. Suppose that 1 /∈ Z, then CZ > c1.

By Theorem 2.5.1, this group of suppliers with indices in Z is not the optimal sourcing set.

Therefore, Q∗
1 > 0.

To provide an intuitive interpretation of Theorem 2.5.2, we regard the original N sup-

pliers as two suppliers: the lowest-wholesale-price supplier 1 and a surrogate supplier rep-

resenting all other suppliers. Clearly, the average wholesale price of the surrogate supplier

for any set of orders will be greater than supplier 1’s wholesale price. It follows from Theo-

rem 2.5.1 that it is optimal for the firm to source from supplier 1. For the two supplier case,

this result immediately implies that cost is the order qualifier. Theorem 2.5.2 has important

managerial implications for the suppliers. Even though the firm does not necessarily follow

the “cost first reliability second” rule when selecting suppliers, the supplier with the lowest

wholesale price will always receive an order from the firm.

With these structural properties, we now present an algorithm in Figure 2.3 to solve

the firm’s problem. The reason for the algorithm to ensure optimality follows directly from

Theorem 2.5.1. Let Ω be the candidate pool, the set that includes all the possible candidates
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for the optimal sourcing set denoted as Z∗. Initially, Ω is the set of all (non-null) subsets

of {1, 2, . . . , N}. Let ‖ · ‖ be the cardinality operator of a set. In order to illustrate the

algorithm, we apply it to Example 2.5.1.

Eliminate all the candidates in Ω that do not have 1 as their element.
n = 1.
While (maxZ∈Ω ‖Z‖ > n) {

for all Z such that ‖Z‖ = n {
Compute CZ ;
If CZ 6 cl, then Ω = Z ∪ Ω\all subsets of{Z, l, . . . ,m};
If cl < CZ 6 cm, then Ω = Ω\all subsets of{Z, k, . . . , m};
Else, Ω = Ω\Z,
where l (resp. m) is the smallest (resp. largest) element in Zc,
and k is the smallest element in Zc such that CZ 6 ck;

}
n = n+1.

}
Z∗ is the element in Ω with the highest profit.

Figure 2.3. An Algorithm for Solving the N Dependent Suppliers Problem.

Example 2.5.2 (Continued from Example 2.5.1)

Ω = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
Eliminate all the candidates in Ω that do not have 1 as their element.

Ω = {{1}, {1, 2}, {1, 3}, {1, 2, 3}}.
n = 1.

maxZ∈Ω ‖Z‖ = 3 > n.

Z = {1},Zc = {2, 3}: C1 = 5.05 > c3 ⇒ Ω = Ω\{1} = {{1, 2}, {1, 3}, {1, 2, 3}}.
n = 1 + 1 = 2.

maxZ∈Ω ‖Z‖ = 3 > n.

Z = {1, 2},Zc = {3}: C{1,2} = 3.528 > c3 ⇒ Ω = Ω\{1, 2} = {{1, 3}, {1, 2, 3}}.
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Z = {1, 3},Zc = {2}: C{1,3} = 1.882 < c2 ⇒ Ω = Ω\{1, 2, 3} = {{1, 3}}.
n = 2 + 1 = 3.

maxZ∈Ω ‖Z‖ = 2 < n.

Z∗ = {1, 3}.

The algorithm presented in Figure 2.3 can be streamlined under certain conditions. To

develop the streamlined procedure, we present one more notion of multivariate dependence

in the bivariate case. Random variables S and T are said to be positively quadrant depen-

dent if P [S 6 s, T 6 t] > P [S 6 s]P [T 6 t] for all s and t (Shaked and Shanthikumar

2007, Sec.9.A.1). Note that two associated random variables imply that they are positively

quadrant dependent. Theorem 2.5.3 further characterizes the firm’s optimal diversification

decision.

Theorem 2.5.3 Assume that all pairs of the N suppliers’ capacities are positively quadrant

dependent. Then, for any two suppliers i and j with ci < cj, if Q∗
i = 0, then Q∗

j = 0.

Proof of Theorem 2.5.3. We prove it by contradiction. Suppose Q∗
j > 0. Since any pair of

suppliers from the N suppliers are positively quadrant dependent, then
∫∞

Q∗j

∫∞
Q∗i

gij(ri, rj)dridrj >
Gi(Q

∗
i )Gj(Q

∗
j) for any i 6= j. It follows that

E[Si|Rj>Q∗j ]

Gj(Q∗j )
> E[Si], which implies that

E[ST |Rj>Q∗j ]

Gj(Q∗j )
> E[ST ] and E[A−ST |ST 6 A] > E[A−ST |Rj>Q∗j &&ST 6A]

Gj(Q∗j )
. If Π(Q) > Π(Q̂), then

from the marginal analysis,
E[a−2ST |Rj>Q∗j ]

b
− cjGj(Q

∗
j) = 0. Therefore, MRi−MCi |Qi=0=

E[a−2ST ]
b

− ci >
E[a−2ST |Rj>Q∗j ]

bGj(Q∗j )
− cj = 0. Consequently, Q∗

i > 0. If Π(Q) 6 Π(Q̂), then from

the marginal analysis,
a−2E[ST |Rj>Q∗j &&ST 6A]

b
+ γ · Pr{Rj > Q∗

j&&ST > A} − cjGj(Q
∗
j) = 0.

This is equivalent to
2E[A−ST |Rj>Q∗j &&ST 6A]

bGj(Q∗j )
+ (γ − cj) = 0. Therefore, MRi−MCi |Qi=0=

2E[A−ST |ST 6A]
b

+ (γ − ci) >
2E[A−ST |Rj>Q∗j &&ST 6A]

bGj(Q∗j )
+ (γ − cj) = 0. Consequently, Q∗

i > 0.

Theorem 2.5.3 provides a sufficient condition under which the insight – cost first relia-

bility second – continues to hold. It is important to point out that this condition is more

general than the condition that all pairs of the N suppliers’ capacities are associated, and
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certainly, this condition is more general than the condition that all pairs of the N suppliers’

capacities are independent. More importantly, from Theorem 2.5.3 and Example 2.5.1, we

see that when suppliers’ capacities are “positively correlated”, the firm can pick suppliers

based on the cost-first-reliability-second insight. On the other hand, when the suppliers’

capacities are “negatively correlated”, the firm must take into consideration the suppliers’

capacity correlations when making sourcing decisions. Whether a supplier is selected or not

depends on this supplier’s wholesale price and the firm’s effective purchase cost from the

selected suppliers. “Negative“ correlation with a selected supplier would make the portfolio

of these two suppliers more attractive by reducing the firm’s effective purchase cost from

these two suppliers, thus potentially alter the insight. However, “positive“ correlation does

not have this impact.

Together, Theorems 2.5.2 and 2.5.3 have the following implications for a supplier. First,

supplier may strive to be the lowest-wholesale-price supplier to guarantee an order from

the firm. If that is not possible, then he could improve his chance of being sourced from

by ensuring his capacity to be negatively correlated with that of the lowest-wholesale-price

supplier.

With Theorem 2.5.3, we present a simple procedure in Figure 2.4 to solve the firm’s

problem when the sufficient condition in Theorem 2.5.3 holds. In this procedure, the sup-

pliers with the n (n = 1, 2, . . . , N) lowest wholesale prices in the candidate pool are always

considered first. Then, the wholesale price of supplier n + 1 is compared with C{1,...,n} to

decide whether the firm should source from supplier n + 1.

For n from 1 to N {
Compute C{1,...,n};
If cn+1 < C{1,...,n}, supplier n + 1 is picked;
Else the optimal ordering quantities are (Q∗

1, . . . , Q
∗
n, 0, . . . , 0); Exit

}

Figure 2.4. A Simple Procedure for Solving the N Dependent Suppliers Problem.
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2.6 Concluding Remarks

We study sourcing and pricing decisions of a firm with unreliable dependent suppliers and

a price-dependent demand. Our results have the following managerial implications for

firms sourcing from unreliable suppliers: First, the firm should always purchase from the

supplier with the lowest wholesale price. Second, the firm must take into consideration

supplier capacity correlation in addition to their wholesale prices and reliabilities when

picking suppliers. Third, from a supplier’s perspective, the most effective weapon for him

to guarantee an order from the firm is to become the lowest-price supplier.

Our analysis of the two-supplier case can be extended to scenarios that include mul-

tiplicative demand forms, initial inventory, or partially reliable suppliers that are able to

guarantee supply quantity up to a certain threshold. The analysis of two-supplier case can

also be extended to the case where the firm pays for orders instead of deliveries. Most

managerial insights continue to hold in these extensions.

We have made several assumptions in this chapter to keep the analysis tractable. In our

analysis, we have assumed that the demand takes a specific form. We expect that our results

would carry over to more general demands by adjusting the expressions for the abundant

supply, the effective purchase cost, the marginal cost/revenue of purchasing from a supplier,

and the unimodality conditions, even though the expressions will be difficult and perhaps

more involved. In order to focus on the impact of supply uncertainty on the firm’s sourcing

decisions with responsive pricing, we have assumed that the demand is deterministic. As

a future research topic, it would be of interest to see if the main insights developed in this

chapter would hold for stochastic demands. Studying how demand uncertainty affects the

firm’s sourcing decision with unreliable suppliers and responsive pricing would be interesting.

In our model, the supplier’s capacity is exogenously determined. That is, it is independent

of the order quantity. On some occasions, the suppliers’ capacities may be affected by

the firm’s order quantities. In these cases, an endogenous capacity uncertainty is more

appropriate. It would be interesting to extend our analysis to these cases as well.
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HOW DOES PRICING POWER AFFECT A FIRM’S SOURCING DECISIONS FROM

UNRELIABLE SUPPLIERS?

3.1 Synopsis

In this chapter, we attempt to answer the following questions. First, how do the market

parameters affect a firm’s optimal sourcing decisions? Second, how does a supplier’s relia-

bility influence a firm’s optimal sourcing decisions? Finally, how does a firm’s pricing power

affect its sourcing decisions?

To answer these questions, we study a firm’s sourcing problem with two unreliable sup-

pliers. We consider the supplier’s unreliability in terms of his random capacity as in, for

example, Ciarallo et al. (1994), Feng (2010), and Wang et al. (2010). In addition to the

existing definition of a supplier’s reliability based on the usual stochastic order (first-order

reliability), we introduce another definition using the convex order (second-order reliability).

The first one relies on the “size” of a supplier’s random capacity, while the other empha-

sizes the “variability” of the random capacity. We say that a supplier becomes first-order

(second-order) more reliable if his capacity increases (resp., decreases) in the usual stochastic

order (resp., the convex order). Suppliers differ from one another in terms of their capacity

distributions as well as their wholesale prices.

As in Li et al. (2012a), we use the concept of effective purchase cost to characterize a

firm’s optimal diversification decision. The effective purchase cost from a supplier is defined

to be his wholesale price plus the imputed cost of his unreliability. We demonstrate that,

regardless of the pricing power, a firm with two possible suppliers always orders from the

supplier that has a lower wholesale price. A firm orders from only one supplier if the effective

purchase cost from this supplier is lower than his rival’s wholesale price. Otherwise, the

38
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firm orders from both.

A price-setting firm is more inclined to diversify as the potential market size increases

or the price sensitivity (of demand) decreases. Furthermore, its optimal order quantity

from each supplier increases in the market size. In the case of diversification with relatively

low wholesale prices of both suppliers, the firm’s optimal order quantity from each supplier

decreases in the price sensitivity. However, when both wholesale prices are relatively high,

while the order quantity from the more expensive supplier decreases in the price sensitivity,

the order quantity from the cheaper supplier may increase as the price sensitivity increases.

A price-taking firm is more inclined to diversify as the market demand increases. How-

ever, the market price and the cost of lost goodwill do not influence the firm’s propensity to

diversify. Moreover, its optimal order quantity from each supplier increases in the market

demand. In the case of diversification with relatively low wholesale prices of both suppliers,

the firm’s optimal order quantity from each supplier increases in the market price, the cost

of lost goodwill, and the salvage value of the product. Interestingly, when both whole-

sale prices are relatively high, while the order quantity from the more expensive supplier

increases in the market price and the cost of lost goodwill, the order quantity from the

cheaper supplier decreases as the market price or the cost of lost goodwill increases.

For a price-setting firm, the effective purchase cost from a supplier increases as the

supplier becomes less reliable in the sense of both “size” and “variability” of the random

capacity. This implies that the firm’s diversification zone, in the two-dimensional space

with the suppliers’ wholesale prices as the coordinate axes, widens as either or both of

the suppliers become less reliable. In particular, a single-sourcing firm leans toward dual

sourcing if its suppliers become less reliable. We should note that this nomenclature does

not take into account the amounts ordered from the suppliers, which of course will change as

discussed in Section 3.4.5, implying a change in the extent of diversification as the suppliers’

reliabilities change. The impacts of suppliers’ reliabilities for the price-taking firm are

different: while a price-taking firm’s effective purchase cost from a supplier decreases as

the supplier becomes first-order more reliable, the effective purchase cost decreases as the
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supplier becomes second-order more reliable only when the market demand is low. When

the market demand is high, the price-taking firm is more inclined to diversify when the

supplier’s second-order reliability increases.

Regardless of the pricing power, when a firm orders only from one supplier, the optimal

order quantity does not depend on his reliability. When a firm is dual sourcing and the

wholesale prices are high, the optimal order quantity from a supplier increases in his first-

order reliability and his rival’s wholesale price, and decreases in his wholesale price and his

rival’s first-order reliability. Surprisingly, when the wholesale prices are low, the optimal

order quantity from a supplier is only affected by his own wholesale price and his rival’s

reliability. In this case, a supplier cannot receive a larger order by increasing his first-order

reliability, but he can be hurt by his rival doing so.

The impacts of suppliers’ second-order reliabilities on the optimal order quantities de-

pend on a firm’s pricing power. When a price-setting firm is dual sourcing and the wholesale

prices are high, the optimal order quantity from a supplier increases in his second-order re-

liability and decreases in his rival’s second-order reliability; when the wholesale prices are

low, the optimal order quantity from a supplier is not affected by his own second-order

reliability, but decreases in his rival’s second-order reliability. However, certain discretion

is necessary when a supplier tries to improve his second-order reliability to win a larger

order from a price-taking firm. Unlike the regular phenomenon, we show in section 3.4.5 in

detail that under certain conditions, a supplier can win, surprisingly, a larger order from a

price-taking firm by reducing his second-order reliability.

The remainder of the paper is organized as follows. In section 3.2 we review the related

literature. In section 3.3 we introduce the model for both price-setting and price-taking

firms with several basic assumptions. In section 3.4, we analyze and solve the problem

and then examine the impacts of suppliers’ reliabilities on a firm’s optimal diversification

decisions. We conclude the paper with some discussion of the results in section 3.5.
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3.2 Literature Review

This paper is related to two streams of literature. One stream deals with procurement

strategies under unreliable supply with exogenously given prices. With one supplier, most

studies examine inventory decisions with random yields; see, for example, Yano and Lee

(1995) and Grosfeld-Nir and Gerchak (2004) for excellent reviews of the literature. On

the other hand, fewer investigate the problems with random supply capacity. Ciarallo et

al. (1994) demonstrate that in the presence of capacity uncertainty, a base-stock policy

remains optimal. While these paper focus on the procurement/production decisions with

one unreliable supplier, our paper examine the firm’s diversification and ordering decisions

with two unreliable suppliers. The benefits of dual-sourcing in the presence of random

yields or random leadtime are well established by Gerchak and Parlar (1990), Ramasesh et

al. (1991), Parlar and Wang (1993), and so on. Dual-sourcing problem with one unreliable

and one perfectly reliable supply source is also studied recently by, for example, Kazaz

(2004), Tomlin (2006), and Tomlin and Snyder (2007). The scenario with multiple unreliable

suppliers is investigated in Agrawal and Nahmias (1997), Tomlin and Wang (2005), Babich

et al. (2007), Tomlin (2009), and Wang et al. (2010).

Studying the impact of a supplier’s reliability on a firm’s optimal order quantity is

not new. Gerchak and Parlar (1990) demonstrate that in an EOQ setting with random

yield, if a firm diversifies, then the ratio of the optimal order quantities Q∗
1 and Q∗

2 satisfies

Q∗
1/Q

∗
2 = (µ1σ

2
2)/(µ2σ

2
1), where the two facilities’ wholesale prices are the same and µi and

σi are the mean and the standard deviation of the yield of facility i, respectively. Anupindi

and Akella (1993) establish a similar relationship in a single-period version of their Model II

when the demand is exponential and yields are normally distributed. Agrawal and Nahmias

(1997) study the problem with a deterministic demand and N unreliable suppliers and

find the same relationship between the order quantities when the wholesale price from all

suppliers is the same. Burke et al. (2009) demonstrate that with a stochastic demand and

N unreliable suppliers, if all suppliers have the same wholesale prices, the optimal order
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quantity for an individual supplier increases (resp., decreases) in the mean (resp., standard

deviation) of his reliability and decreases (resp., increases) in the mean (resp., standard

deviation) of his rival’s reliability.

Different from the above papers, a supplier’s random capacity in our model has a general

distribution. We use the concepts of stochastic orders to study the impacts of supplier

reliability. More importantly, we demonstrate that a firm’s optimal order quantity from a

supplier is not necessarily monotone in the ”variability” of the supplier’s capacity. Dada

et al. (2007) also study a firm’s sourcing decision under general assumptions on supply

uncertainty. They define a supplier to become more reliable if his capacity increases in the

usual stochastic order and demonstrate that the optimal order for a supplier increases in

his reliability and decreases in his rival’s reliability. In this paper, we define a more general

notion of supplier reliability and demonstrate that the impacts of supplier reliability may

be different when a firm has different pricing powers.

With two or more independent unreliable suppliers, it is argued in the literature that

cost takes precedence over reliability when it comes to selecting suppliers, and reliability

affects the order quantity from a selected supplier. Anupindi and Akella (1993) demonstrate

that it is always optimal to order some amount from the least expensive supplier, when the

initial inventory is insufficient in a multi-period setting where the supply uncertainty can

be either in delivery time or delivery quantity or both. Dada et al. (2007) establish the

cost-first-reliability-second insight in a single-period setting with more general assumptions

on supply uncertainty, where the firm pays for the delivered quantity. Federgruen and Yang

(2009) demonstrate a result similar to Dada et al. (2007) in two versions of the planning

model–the service constraint model and the total cost model–when the firm pays for every

unit ordered. Swaminathan and Shanthikumar (1999), on the other hand, find that in the

case of discrete demand, ordering from the most expensive supplier alone may be optimal.

In this paper, we confirm the cost-first-reliability-second insight by studying a firm’s supply

diversification problem with different pricing powers.

The second line of literature related to our paper focuses on inventory decisions with
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price-dependent demands. Initially, most of the operations management literature, dealing

with pricing in inventory/capacity management, focuses on a single product with perfectly

reliable supply. Whitin (1955) and Mills (1959, 1962) were among the first who consider

endogenous prices in inventory/capacity models. Comprehensive reviews of the newsvendor-

type models with endogenous prices have been written by Porteus (1990) and Petruzzi and

Dada (1999). Van Mieghem and Dada (1999) discuss price and production postponement

strategies as mechanisms for a firm to manage uncertain demand. Bish and Wang (2004)

and Chod and Rudi (2005) extend the work of Van Mieghem and Dada (1999) to two-

product cases. In particular, Chod and Rudi (2005) demonstrate that with the additional

flexibility gained from responsive pricing, the firm can maximize the benefits of favorable

demand conditions and mitigate the effects of poor demand conditions, ultimately profiting

from variability.

The first work that addresses joint pricing and inventory decisions in the presence of

random yield is done by Li and Zheng (2006). They show that the optimal inventory

replenishment is characterized by a threshold value. Feng (2010), on the other hand, inves-

tigates dynamic pricing and replenishment decisions in the presence of random capacity, and

show that a base stock list price policy fails to achieve optimality even with a deterministic

demand. Feng (2010) also examines the value of dynamic pricing under supply uncertainty

over static pricing. Tomlin and Wang (2008) study production, pricing, downconversion,

and allocation decisions in a two-class, stochastic-demand, stochastic-yield coproduction

system. They show that recourse pricing benefits a firm more than either downconversion

or recourse allocation do. Tang and Yin (2007), who also study responsive pricing under

supply uncertainty, demonstrate that a firm can gain a higher expected profit under a re-

sponsive pricing policy and examine the impact of yield distribution and system parameters

on the optimal order quantities via a numerical analysis. Our work is different from their

previous works in that we consider two unreliable suppliers and analytically examine how

the influence of a supplier’s reliability on a firm’s sourcing decision is affected by its pricing

power.
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Li et al. (2012a) consider a firm’s supply diversification problem in the presence of

random supply capacity with responsive pricing. They demonstrate that the cost-first-

reliability-second insight does not hold when there are more than two correlated suppliers

and they focus on the impact of supplier capacity correlation on the firm’s optimal diver-

sification decisions. In this paper, by investigating the diversification problems for both

price-setting and price-taking firms, we focus on the effects of market parameters and sup-

pliers’ reliabilities on their diversification decisions when they have different pricing powers.

3.3 Models

Consider a profit-maximizing firm that may order goods from two suppliers and sells them

in the retail market in a single selling season. The suppliers differ from one another in terms

of their wholesale prices and reliabilities. They can be either perfectly reliable or unreliable,

where the distinction is viewed from the firm’s perspective. A supplier is perfectly reliable

if he can meet fully the firm’s order regardless of the order size; he is unreliable if he cannot.

Supplier i (i = 1, 2), when unreliable, has a given random production capacity Ri; if supplier

i is perfectly reliable, then we have the special deterministic case with Ri ≡ ∞. We assume

that Ri has the cumulative distribution function (cdf) Gi(r) ≡ 1 − Gi(r) > 0 and the

probability density function (pdf) gi(r) > 0 for r > 0. We also assume that the random

variables R1 and R2 are independent.

For a price-setting firm, the selling season consists of two stages. In the first stage, the

firm orders a quantity Qi from supplier i at the wholesale price of ci and receives the quantity

Si(Qi) = min{Qi, Ri}, i = 1, 2. The firm pays a supplier only for the quantity delivered.

In the second stage, based on the total received quantity S(Q1, Q2) = S1(Q1) + S2(Q2),

the firm decides the unit retail price p for the product. We assume the demand to be

deterministic and price-dependent in the additive form, that is, D(p) = a− bp, where a > 0

is the potential market size and b > 0 is the price sensitivity of the demand. To ensure that

the firm is able to make a positive profit and avoid trivial cases, we assume that ci < a/b.
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We assume holdback rather than clearance, and thus, there could be unsold units, which the

firm salvages in a secondary market at a unit price γ. Since the firm pays for the delivery

quantity, if either c1 or c2 is less than γ, the firm will order infinite amount from the supplier

whose wholesale price is less than γ. To exclude this case, we assume that γ < ci. The cost

of lost goodwill is δ for each unit of the unfulfilled demand.

We use superscript S to indicate the case of the price-setting firm. The price-setting

firm’s objective is to choose the order quantities {QS
1 , QS

2 } in the first stage and the retail

price pS in the second stage to maximize its expected profit ΠS
(
QS

1 , QS
2

)
, which is equal to

its expected second-stage profit E[ΠS
2

(
QS

1 , QS
2

)
] less its expected purchase cost in the first

stage. The firm’s problem is:

max
QS

1 ,QS
2 >0

{
ΠS

(
QS

1 , QS
2

)
= E

[
ΠS

2

(
QS

1 , QS
2

)−
2∑

i=1

ciSi(Q
S
i )

]}
, (3.1)

where ΠS
2

(
QS

1 , QS
2

)
= max

pS>0
π(pS) = max

pS>0

{
pS ·min{D(pS), S(QS

1 , QS
2 )}

+γ · (S(QS
1 , QS

2 )−D(pS)
)+ −δ · (D(pS)− S(QS

1 , QS
2 )

)+
}

.

(3.2)

For the price-taking firm, the selling season only has the first stage that is described earlier.

The retail price p is given. To avoid trivial cases, we assume that p > ci. The deterministic

market demand D is assumed to be exogenously given. We use superscript T to indicate

the case of the price-taking firm. Its objective is to choose the order quantities {QT
1 , QT

2 }
to maximize its expected profit ΠT

(
QT

1 , QT
2

)
:

max
QT

1 ,QT
2 >0

{
ΠT

(
QT

1 , QT
2

)
= E

[
p ·min{D,S(QT

1 , QT
2 )}+ γ · (S(QT

1 , QT
2 )−D

)+

−δ · (D − S(QT
1 , QT

2 )
)+ −

2∑
i=1

ciSi(Q
T
i )

]}
. (3.3)
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3.4 Analysis

3.4.1 The Price-Setting Firm

For the price-setting firm’s problem, we specialize the results from Li et al. (2012) to the

case of two independent suppliers. The abundant supply A ≡ (a− bγ)/2 in Li et al. (2012)

refers to the threshold delivery quantity, above which the firm’s marginal revenue becomes

the same as the salvage value γ. We also define the (unit) effective purchase cost from

supplier i expressed as a function of his wholesale price c as

CS
i (c) ≡ c +

∫ a−bc
2

0

(
a− 2r

b
− c

)
dGi(r). (3.4)

Theorem 2 in Li et al. (2012) applied to the case of two independent suppliers characterizes

the firm’s optimal order quantities from the suppliers as given below.

Corollary 3.4.1 (of Theorem 2 in Li et al. (2012)) The price-setting firm’s optimal order

quantities are





QS∗
1 = (a− bc1)/2, Q

S∗
2 = 0, if c2 > CS

1 (c1),

QS∗
1 = 0, QS∗

2 = (a− bc2)/2, if c1 > CS
2 (c2),

QS∗
1 = Q

S

1 , QS∗
2 = Q

S

2 , if c1 < CS
2 (c2) and c2 < CS

1 (c1) and Q̂S
1 (c1) + Q̂S

2 (c2) 6 A,

QS∗
1 = Q̂S

1 , QS∗
2 = Q̂S

2 , otherwise,

where, for i = 1, 2, Q
S

i is the solution of

a− bci − 2Qi − 2

∫ a−bc3−i
2

−∫ Qi
0 Gi(r)dr

0

G3−i(r)dr = 0, (3.5)

and Q̂S
i is the solution of

2

∫ A−Qi

0

G3−i(r)dr − b(ci − γ) = 0. (3.6)

Proof of Corollary 3.4.1. The proof is referred to Li et al. (2012).
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Figure 3.1(a) illustrates Corollary 3.4.1 and demonstrates how the changes in the sup-

pliers’ wholesale prices affect the price-setting firm’s optimal diversification decision. The

feasible area for the wholesale prices is divided into two zones: the dedication zone and

the diversification zone. The dedication zone consists of two areas: I(1) and I(2), where

the firm orders only from supplier 1 or supplier 2, respectively. The diversification zone,

where the firm orders from both suppliers, is subdivided into diversification zones I and II,

where the total order quantity is less or greater, respectively, than the abundant supply.

Moreover, the optimal order quantities in diversification zones I and II are characterized by

(3.5) and (3.6), respectively. Next, we study the impacts of market conditions on the firm’s

diversification decision.

(a) (b)

Figure 3.1. Optimal Diversification Decision for (a) the Price-Setting Firm and (b) the
Price-Taking Firm

Proposition 3.4.2 The effective purchase cost CS
i (ci) increases in the potential market size

and decreases in the price sensitivity.

Proof of Proposition 3.4.2. It can be easily verified that ∂CS
i (ci)/∂a = Gi((a −

bci)/2)/b > 0 and ∂CS
i (ci)/∂b = −[bciGi((a− bci)/2) + 2

∫ a−bci
2

0
Gi(r)dr]/b2 < 0.
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When the potential market size (resp., the price sensitivity) increases (resp., decreases),

the optimal order quantity from a sole supplier increases, and thus the probability for a

supplier to deliver the optimal quantity decreases. Meanwhile, the firm’s marginal revenue

increases, which leads to an increase of the opportunity cost of an undelivered unit. There-

fore, the imputed cost of a supplier’s unreliability increases, which in turn increases the

effective purchase cost from him. By Corollary 3.4.1, Proposition 3.4.2 implies that as the

potential market size (resp., the price sensitivity) increases (resp., decreases), the diversifi-

cation zone becomes larger. However, note that when the potential market size (resp., the

price sensitivity) increases (resp., decreases), the feasible area for the wholesale prices and

the dedication zone become larger as well. Then how does the area of the diversification

zone as a fraction of the feasible area change with respect to the potential market size and

the price sensitivity? We have the following result.

Proposition 3.4.3 The area of the diversification zone as a fraction of the feasible area

increases in the potential market size and decreases in the price sensitivity.

Proof of Proposition 3.4.3. Consider the diversification zone above c2 = c1. For any

fixed value of c1, it is sufficient to show that (the distance between the curves c2 = CS
1 (c1)

and c2 = c1)/(the distance between the curves c2 = a/b and c2 = c1), i.e.(∫ a−bc1
2

0

(
a−2r

b
− c

)
dG1(r)

)
/ (a/b− c1) increases in a and decreases in b, which can be ver-

ified. The proof is similar for the diversification zone below c2 = c1.

For a price-dependent demand D(p) = a − bp, when the potential market size (resp.,

the price sensitivity) increases (resp., decreases), the absolute value of the price elasticity of

the demand decreases. Therefore, the impact of a firm’s ability to adjust the retail price on

the demand is reduced. To compensate for this pricing power reduction and mitigate the

impact of supply uncertainty, the firm’s propensity to diversify naturally increases.

Next, we characterize the impacts of the market conditions on the optimal order quan-

tities.
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Proposition 3.4.4 (i) The optimal order quantity from each supplier increases in the po-

tential market size. (ii) In the dedication zone and diversification zone II, the optimal order

quantity from each supplier decreases in the price sensitivity. (iii) In diversification zone I,

the total order quantity decreases in the price sensitivity. (iv) In diversification zone I, the

optimal order quantity from the more expensive (in the sense of wholesale price) supplier

decreases in the price sensitivity. (v) In diversification zone I, the optimal order quantity

from the less expensive (in the sense of wholesale price) supplier (say, supplier i) increases

in the price sensitivity when ci < c3−iG3−i(Q
S

3−i).

Proof of Proposition 3.4.4. (i) In dedication zone, ∂QS∗/∂a = 1/2 > 0. In diversification

zone I, for i = 1, 2,

∂Q
S

i

∂a
=

G3−i(
a−bc3−i

2
− ∫ Q

S
i

0
Gi(r)dr)

2− 2Gi(Q
S

i )G3−i(
a−bc3−i

2
− ∫ Q

S
i

0
Gi(r)dr)

> 0.

In diversification zone II, for i = 1, 2, ∂Q̂S
i /∂a = 1/2 > 0.

(ii) In the dedication zone, ∂QS∗/∂b = −c/2 < 0. In diversification zone II, for i = 1, 2,

∂Q̂S
i

∂b
=
−(ci − γ)− γG3−i(A− Q̂S

i )

2G3−i(A− Q̂S
i )

< 0.

(iii) Without loss of generality, we assume c1 > c2. In diversification zone I, Q
S

1 + Q
S

2 =

(a− bc2)/2 +
∫ Q

S
1

0
G1(r1)dr1. By claim (iv), as b increases, Q

S

1 decreases. Thus, both terms

on the RHS of previous equation decrease. Consequently, the firm’s optimal total order

quantity decreases.

(iv) In the diversification zone I, for i = 1, 2,

∂Q
S

i

∂b
=

−ci + c3−iG3−i(
a−bc3−i

2
− ∫ Q

S
i

0
Gi(r)dr)

2− 2Gi(Q
S

i )G3−i(
a−bc3−i

2
− ∫ Q

S
i

0
Gi(r)dr)

.

If ci > c3−i, then ∂Q
S

i /∂b < 0.

(v) From (iv), it is straightforward that, if ci < c3−iG3−i(Q
S

3−i), then ∂Q
S

i /∂b > 0.
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When the potential market size increases, the firm’s marginal revenue of ordering from

either supplier increases and, therefore, the firm orders more from each supplier. In the

dedication zone and diversification zone II, the firm’s marginal revenue from a supplier

does not depend on its order quantity from the other supplier. Therefore, when the price

sensitivity increases, the firm’s marginal revenue of ordering from each supplier decreases;

consequently, the firm orders less from each supplier. In diversification zone I, the firm’s

marginal revenue from a supplier depends on its order quantities from both suppliers. When

the two suppliers’ wholesale prices are close, as the price sensitivity increases, the firm’s

marginal revenue decreases from both suppliers. To compensate for this loss, the firm

has to reduce its order quantities from both suppliers. Interestingly, when one supplier’s

wholesale price is sufficiently low, the optimal order quantity for this supplier increases when

the price sensitivity increases. The intuitive explanation is as follows. The two suppliers are

substitutes for the firm. When the price sensitivity increases, the firm’s marginal revenue

decreases. To compensate for this loss, the firm has to reduce its order quantity from its

suppliers. When a supplier’s wholesale price is sufficiently low, the compensation for the

firm’s marginal revenue loss by reducing the order quantity from the more expensive supplier

is much more significant than by reducing the less expensive supplier’s order quantity. Thus,

in this case, the firm would rather reduce the order quantity from the more expensive

supplier. Once the firm regains the marginal revenue from the more expensive supplier, the

firm’s marginal revenue is higher than its marginal cost from the less expensive supplier.

Consequently, the order quantity for the less expensive supplier increases. Consider a special

case: c1 < c2 and supplier 2 is perfectly reliable. In this case, the firm’s order quantity from

supplier 1 is increasing in the price sensitivity. This result reveals another benefit of being

a lower cost supplier, that is, an increased price sensitivity may bring a larger order and

hurt the other supplier.
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3.4.2 The Price-Taking Firm

For the price-taking firm, the abundant supply becomes the market demand D. It can be

easily shown that in the single-supplier case, the firm’s optimal order quantity is always D.

In this case, the (unit) effective purchase cost from supplier i is modified as

CT
i (c) ≡ c + (p + δ − c)Gi(D). (3.7)

The effective purchase cost CT
i (ci) from supplier i consists of his wholesale price ci and

the unit imputed cost of his unreliability. The latter cost, termed the unreliability cost of

supplier i, kicks in only if he is unable to deliver the optimal ordered quantity D derived

for the one-supplier case, and it is equal to the marginal profit that the firm would make

if he could deliver one additional unit. With each unit increase in the realized capacity of

supplier i, the firm’s profit increases by p + δ − ci. The expected unit cost of unreliability

is easily seen to be the second term in (3.7). We can now characterize the firm’s optimal

sourcing decisions as follows.

Proposition 3.4.5 The price-taking firm’s optimal order quantities are




QT∗
1 = D,QT∗

2 = 0, if c2 > CT
1 (c1),

QT∗
1 = 0, QT∗

2 = D, if c1 > CT
2 (c2),

QT∗
1 = Q

T

1 , QT∗
2 = Q

T

2 , if c1 < CT
2 (c2), c2 < CT

1 (c1), and

G−1
1

(
c2 − γ

p + δ − γ

)
+ G−1

2

(
c1 − γ

p + δ − γ

)
> D,

QT∗
1 = Q̂T

1 , QT∗
2 = Q̂T

2 , otherwise,

where, Q
T

1 and Q
T

2 are the solutions of the two simultaneous equations




G1(Q1)

G2(D −Q1)
=

p + δ − c2

p + δ − c1

,

Q1 + Q2 = D,

(3.8)

and Q̂T
1 and Q̂T

2 are the solutions of

G3−i(D −Qi) =
p + δ − ci

p + δ − γ
, i = 1, 2. (3.9)
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Proof of Proposition 3.4.5. For the ease of expression, the superscript T is removed

from this proof. To solve the problem, we divide the feasible space of {Q1, Q2} into five

regions depending on the specific forms of the expected profit function (3.3) in these regions:

Region I: Q1 > 0, Q2 > 0, Q1 + Q2 6 D; Region II: Q1 + Q2 > D,Q1 6 D,Q2 6 D; Region

III: 0 6 Q1 6 D,Q2 > D; Region IV: 0 6 Q2 6 D,Q1 > D; Region V: Q1 > D,Q2 > D.

Lemma 3.4.6 (i) The optimal solution in Region III must satisfy Q2 = D. (ii) The optimal

solution in Region IV must satisfy Q1 = D. (iii) The optimal solution in Region V must

satisfy Q1 = Q2 = D.

Proof of Lemma 3.4.6. Suppose the firm orders Qi > D from supplier i. If supplier i’s

capacity turns out to be less than D, then the firm can get the same profit by ordering D

from him; if supplier i’s capacity turns out to be greater than D, then the firm can get more

profit by ordering D from him since the extra units will be salvaged at γ < ci.

Lemma 3.4.7 The unique optimal order quantities (Q∗
1, Q

∗
2) satisfy





Q∗
1 = (a− bc1)/2, Q

∗
2 = 0, if c2 > C1(c1),

Q∗
1 = 0, Q∗

2 = (a− bc2)/2, if c1 > C2(c2),

Q∗
1 = Q1, Q

∗
2 = Q2, if c1 < C2(c2), c2 < C1(c1), and Q̂1(c1) + Q̂2(c2) 6 D,

(Q∗
1, Q

∗
2) are in Region II, otherwise.

(3.10)

Proof of Lemma 3.4.7. Let Ψ1(x, y) ≡ (x+y)p−δ(D−x−y) and Ψ2(x, y) ≡ Dp+γ(x+

y − D). In Region I: Q1 > 0, Q2 > 0, Q1 + Q2 6 D, the second term of (3.3) disappears,

and the expected profit function becomes

Π(Q1, Q2) =

∫ Q1

0

∫ Q2

0

Ψ1(r1, r2)g1(r1)g2(r2)dr2dr1 +

∫ ∞

Q1

∫ ∞

Q2

Ψ1(Q1, Q2)g1(r1)g2(r2)dr2dr1

+

∫ Q1

0

∫ ∞

Q2

Ψ1(r1, Q2)g1(r1)g2(r2)dr2dr1 +

∫ Q2

0

∫ ∞

Q1

Ψ1(Q1, r2)g1(r1)g2(r2)dr2dr1

−c1

[∫ Q1

0

r1g1(r1)dr1 + Q1G1(Q1)

]
− c2

[∫ Q2

0

r2g2(r2)dr2 + Q2G2(Q2)

]
.
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Since for i = 1, 2, ∂Π(Q1, Q2)/∂Qi = (p + δ− ci)Gi(Qi) > 0, the optimal solution in Region

I must be on the boundary Q1 +Q2 = D. Replace Q2 with D−Q1 in the profit function and

take the first order derivative with respect to Q1 yields the following necessary condition

for optimal Q1:

dΠ(Q1)

dQ1

= (p + δ − c1)G1(Q1)− (p + δ − c2)G2(D −Q1) ≡ H(Q1) = 0.

Consequently, dΠ2(Q1)/dQ2
1 = H ′(Q1) < 0. It can be verified that if c1 > CT

2 (c2), then

H(Q1) < 0 for Q1 ∈ [0, D]. Thus, the firm should order from supplier 2 alone with order

quantity D. On the other hand, if c2 > CT
1 (c1), then H(Q1) > 0 for Q1 ∈ [0, D]. Thus, the

firm should order from supplier 1 alone with order quantity D. As we shall show later, if

Q̂1(c1) + Q̂2(c2) 6 D, then the optimal order quantity is on the boundary Q1 + Q2 = D. In

summary, the firm’s optimal order quantity is characterized by (3.10).

Lemma 3.4.8 The unique optimal order quantities satisfy





Q∗
1 = Q̂1, Q

∗
2 = Q̂2, if Q̂1(c1) + Q̂2(c2) > D,

(Q∗
1, Q

∗
2) in on the boundary Q1 + Q2 = D, otherwise.

(3.11)

Proof of Lemma 3.4.8. In Region II: Q1 + Q2 > D,Q1 6 D,Q2 6 D, the expected profit

function becomes

Π(Q1, Q2) =
∫ D−Q2

0

∫ Q2

0

Ψ1(r1, r2)g1(r1)g2(r2)dr2dr1 +

∫ Q1

D−Q2

∫ D−r1

0

Ψ1(r1, r2)g1(r1)g2(r2)dr2dr1

+

∫ Q1

D−Q2

∫ Q2

D−r1

Ψ2(r1, r2)g1(r1)g2(r2)dr2dr1 +

∫ D−Q2

0

∫ ∞

Q2

Ψ1(r1, Q2)g1(r1)g2(r2)dr2dr1

+

∫ Q1

D−Q2

∫ ∞

Q2

Ψ2(r1, Q2)g1(r1)g2(r2)dr2dr1 +

∫ D−Q1

0

∫ ∞

Q1

Ψ1(Q1, r2)g1(r1)g2(r2)dr1dr2

+

∫ Q2

D−Q1

∫ ∞

Q1

Ψ2(Q1, r2)g1(r1)g2(r2)dr1dr2 +

∫ ∞

Q1

∫ ∞

Q2

Ψ2(Q1, Q2)g1(r1)g2(r2)dr2dr1

−c1

[∫ Q1

0

r1g1(r1)dr1 + Q1G1(Q1)

]
− c2

[∫ Q2

0

r2g2(r2)dr2 + Q2G2(Q2)

]
.
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The first-order conditions for an interior solution are

1

G1(Q1)

∂Π(Q1, Q2)

∂Q1

= (p + δ − γ)G2(D −Q1)− (c1 − γ) ≡ H2
1 (Q1) = 0, (3.12)

1

G2(Q2)

∂Π(Q1, Q2)

∂Q2

= (p + δ − γ)G1(D −Q2)− (c2 − γ) ≡ H2
2 (Q2) = 0. (3.13)

By definition, {Q̂1, Q̂2} are the solution of (3.12) and (3.13). Apparently, {Q̂1, Q̂2} ∈
(0, D), so they are in Region I or II. By (3.12), dH2

1 (Q1)/dQ1 < 0. Therefore, for any

Q1 > Q̂1, H2
1 (Q1) < 0. By symmetry, for any Q2 > Q̂2, H2

2 (Q2) < 0. Since in Region I,

the optimal order quantity is on the boundary Q1 + Q2 = D, then if (Q̂1, Q̂2) is in Region

II, then they are the optimal order quantities for the firm. On the other hand, if (Q̂1, Q̂2)

is in Region I, then it can be easily verified that for all the (Q1, Q2) in Region II, either

H2
1 (Q1) < 0 or H2

2 (Q2) < 0. Therefore, the optimal order quantity is on the boundary

Q1 + Q2 = D. In summary, the optimal order quantities are characterized by (3.11). It can

be verified that if there exists an interior optimal solution, then the Hessian at the optimal

point is negative definite. Therefore, the profit function is unimodal, and it achieves its

maximum at a unique point.

Since Q̂1(c1) + Q̂2(c2) 6 D is equivalent to G−1
1

(
c2−γ

p+δ−γ

)
+ G−1

2

(
c1−γ

p+δ−γ

)
> D, the proof

of Proposition 3.4.5 follows from Lemmas 3.4.6-3.4.8.

Figure 3.1(b) illustrates Proposition 3.4.5 and demonstrates how the changes in the

wholesale prices affect the price-taking firm’s optimal diversification decision. The dedica-

tion zone consists of two areas: I(1) and I(2), where the firm orders only from supplier 1 or

supplier 2, respectively. The diversification zone, is subdivided into diversification zones I

and II, where the total order quantity is equal to or greater than, respectively, the deter-

ministic demand D. Moreover, the optimal order quantities in diversification zones I and II

are characterized by (3.8) and (3.9), respectively.

When the wholesale prices lie in diversification zone I, the firm’s optimal total order

quantity is exactly equal to the demand D. The first equation of (3.8) can be interpreted as

the firm’s marginal profit G1(Q1)(p+ δ− c1) from supplier 1, is equal to the firm’s marginal



www.manaraa.com

55

profit G2(Q2)(p + δ − c2) from supplier 2. In diversification zone II, if supplier i’s random

capacity ri turns out to be less than Qi, then the firm’s marginal revenue and cost from

supplier i are both zero. On the other hand, conditional on the full delivery of supplier i,

the firm’s marginal cost is ci, while its marginal revenue from supplier i depends on the

realization of supplier (3− i)’s capacity, i = 1, 2. If the random capacity of supplier (3− i)

is larger than D − Qi, i = 1, 2, then the total delivery will exceed the demand and the

marginal revenue is γ; otherwise, the firm cannot meet all the demand and the marginal

revenue is p + δ. Equating the expected marginal revenue and the expected marginal cost

yields equation (3.9).

Proposition 3.4.9 The effective purchase cost CT
i (ci) increases in the market price, the

cost of lost goodwill, and the market demand.

Proof of Proposition 3.4.9. By (3.7), the proof is trivial.

When the market demand increases, the optimal order quantity for the single-supplier

case increases, and thus the probability for a supplier to deliver the optimal quantity de-

creases; when the market price or the cost of lost goodwill increases, the firm’s marginal

revenue increases, which leads to an increase in the opportunity cost of an undelivered

unit. Therefore, the imputed cost of a supplier’s unreliability increases, which increases the

effective purchase cost from him. By Proposition 3.4.5, Proposition 3.4.9 implies that as

the market price, the cost of lost goodwill, or the demand increase, the diversification zone

becomes larger. However, note that when the market price and the cost of lost goodwill

increases, the feasible area for the wholesale prices and the dedication zone become larger

as well. Proposition 3.4.10 indicates how the area of the diversification zone as a fraction

of the feasible area changes with respect to the market price and the cost of lost goodwill.

Proposition 3.4.10 The area of the diversification zone as a fraction of the feasible area

increases in the market demand, but it does not change in the market price and the cost of

lost goodwill.
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Proof of Proposition 3.4.10. Consider the diversification zone above c2 = c1. For any

fixed value of c1, it is sufficient to show that (the distance between the curves c2 = CT
1 (c1)

and c2 = c1)/(the distance between the curves c2 = p + δ and c2 = c1), i.e. (p + δ −
c1)G1(D)/(p + δ − c1) = G1(D) increases in D and does not depend on p and δ, which is

straightforward. The proof is similar for the diversification zone below c2 = c1.

From Proposition 3.4.10, unlike for the price-setting firm, the economic parameters have

no impact on the price-taking firm’s propensity to supply diversification. It is determined

only by the market demand and suppliers’ reliabilities. Next, we examine how the economic

parameters affect the price-taking firm’s order quantities.

Proposition 3.4.11 (i) The optimal order quantity for each supplier increases in the mar-

ket demand. (ii) In diversification zone I, the optimal order quantity for the more-expensive

(resp., less-expensive) supplier increases (resp., decreases) in the market price and the cost

of lost goodwill. (iii) In diversification zone II, the optimal order quantity for each supplier

increases in the market price, the cost of lost goodwill, and the salvage value.

Proof of Proposition 3.4.11. (i) The proof for the dedication zone is trivial. In the

diversification zone I,

dQ
T

1

dD
=

(p + δ − c2)g2(D −Q
T

1 )

(p + δ − c1)g1(Q
T

1 ) + (p + δ − c2)g2(D −Q
T

1 )
> 0,

dQ
T

2

dD
=

(p + δ − c1)g1(Q
T

1 )

(p + δ − c1)g1(Q
T

1 ) + (p + δ − c2)g2(D −Q
T

1 )
> 0.

In the diversification zone II, for i = 1, 2, dQ̂T
i /dD = 1 > 0.

(ii) Without loss of generality, assume c1 > c2. In the diversification zone I, by (3.8),

G1(Q
T

1 )−G2(D −Q
T

1 ) > 0. Thus,

dQ
T

1

dp
= −dQ

T

2

dp
=

dQ
T

1

dδ
= −dQ

T

2

dδ
=

G1(Q
T

1 )−G2(D −Q
T

1 )

(p + δ − c1)g1(Q
T

1 ) + (p + δ − c2)g2(D −Q
T

1 )
> 0.

(iii) In the diversification zone II, by (3.9), it can be verified that, for i = 1, 2, dQ̂T
i /dp >

0, dQ̂T
i /dδ > 0, and dQ̂T

i /dγ > 0.
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Intuitively, as the market demand increases, the firm orders more from each supplier.

In diversification zone II, as the market price, the cost of lost goodwill, or the salvage

value increases, the firm’s expected marginal revenue increases. Therefore, the firm orders

more from each supplier. Interestingly, in diversification zone I, i.e., when both supplier’s

wholesale prices are relatively high, as the market price or the cost of lost goodwill increases,

the firm will shift some orders from the less-expensive supplier to the more-expensive supplier

without changing the total order quantity. The intuition behind this result is as follows.

Since the optimal total order quantity is fixed in diversification zone I, the firm must balance

the expected marginal profits from the two suppliers. If c1 > c2, then the firm’s marginal

profit p + δ − c1 from supplier 1, is less than the firm’s marginal profit p + δ − c2 from

supplier 2. To balance the expected marginal profits, the probability G1(Q1) of getting

supplier 1’s marginal profit must be larger than the probability G2(Q2) of getting supplier

2’s marginal profit. Therefore, an increase of p or δ will make the firm’s expected marginal

profit from supplier 1 higher than that from supplier 2. To counterbalance this effect, the

firm has to reduce the probability of getting supplier 1’s marginal profit by increasing the

order quantity from him. The implications for the suppliers are as follows. When both

supplier’s wholesale prices are relatively low, an increase in the market price or the cost

of lost goodwill is beneficial to both suppliers. However, when both supplier’s wholesale

prices are relatively high, an increase of the market price or the cost of lost goodwill is

only beneficial to the more expensive supplier, while the cheaper supplier will gain with a

decrease of the market price or the cost of lost goodwill.

3.4.3 Comparison of Diversification Zones

In this subsection, we compare the diversification zones of the price-setting and price-taking

firms. By (3.4) and (3.7), it is easy to verify that the effective purchase costs defined for

both types of firms are increasing in the supplier’s wholesale price. Note that the increase

rates of both effective purchase costs are less than 1, which indicates that the imputed cost

of supplier’s unreliability is decreasing in his wholesale price. Moreover, as can be seen from
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Figure 3.1, the effective purchase cost is convex in the supplier’s wholesale price for the

price-setting firm, while it is linear for the price-taking firm.

As in Figure 3.1, a firm’s diversification zone depends on the effective purchase costs

from its suppliers. To compare the diversification zones in the two pricing power models,

we make the following assumptions:

p + δ =
a

b
, Gi(D) > 1

A

∫ A

0

Gi(ri)dri, for i = 1, 2.

The first assumption ensures that the feasible area for the suppliers’ wholesale prices is the

same for both models, which can be clearly seen in Figure 3.1. The second assumption

requires that the market demand is reasonably large. With these assumptions, we present

the following proposition which compares the price-setting firm’s diversification zone with

the price-taking firm’s.

Proposition 3.4.12 The price-setting firm’s diversification zone is smaller than the price-

taking firm’s.

Proof of Proposition 3.4.12. When p + δ = a/b, with the assumption that Gi(D) >
1
A

∫ A

0
Gi(ri)dri, it can be verified that CT

i (p+ δ) = CS
i (a/b) and CT

i (γ) > CS
i (γ) for i = 1, 2.

Furthermore, CS
i (ci) is increasing and convex in ci, while CT

i (ci) is increasing and linear in ci.

Therefore, it is straightforward to show that CT
i (ci) > CS

i (ci) for ci ∈ (γ, a/b), which implies

that the price-setting firm’s diversification zone is smaller than the price-taking firm’s.

Intuitively, both pricing and supply diversification help a firm to hedge supply uncer-

tainty. Therefore, the price-setting firm’s need for diversification is naturally smaller.

3.4.4 Impact of Supplier Reliability on Effective Purchase Cost

In order to investigate the impact of supplier reliability, we first define a supplier’s reliability

using some concepts of stochastic dominance that can be found in Shaked and Shanthikumar

(2007). A random variable Y is said to be greater than another random variable X in
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the usual stochastic order, denoted as Y >st X, if E[f(Y )] > E[f(X)] for all increasing

functions f . Likewise, Y is said to be greater than X in the convex order, denoted as

Y >cx X, if E[f(Y )] > E[f(X)] for all convex functions f . Dada et al. (2007) define

a supplier as more reliable if his capacity increases in the usual stochastic order; in this

paper, we will say that he becomes first-order more reliable. It is important to note that

this definition ignores the capacity “variability” when comparing a supplier’s reliability

with different capacities. In practice, however, it is common to view a supplier to also

become more reliable if his capacity variability decreases with the capacity mean remaining

unchanged. This motivates us to define another notion of reliability based on the convex

order stochastic dominance. Accordingly, a supplier with capacity Y is second-order more

reliable than that with capacity X if Y 6cx X. Together, these two notions of reliability

cover increases in a supplier’s reliability brought about by having a “larger” capacity or a

“less variable” capacity. For normally distributed capacities, the relatively abstract notions

of reliability can be made concrete: a supplier with capacity Y is first-order more reliable

than that with capacity X if E[Y ] > E[X] and V ar(Y ) = V ar(X) and he is second-order

more reliable if E[Y ] = E[X] and V ar(Y ) 6 V ar(X).

In view of the importance of the effective purchase cost from a supplier on a firm’s

diversification decision, we study how the changes in a supplier’s reliability affect the effective

purchase cost from that supplier. First, we examine the case for the price-setting firm.

Proposition 3.4.13 The price-setting firm’s effective purchase cost CS
i (ci) from supplier

i, decreases as he becomes first-order or second-order more reliable.

Proof of Proposition 3.4.13. By the definition of the usual stochastic order, when the

capacity of supplier i increases in the usual stochastic order, its distribution Gi(r) decreases

(Shaked and Shanthikumar 2007, 1.A.1, p.3). It follows from (3.4) that the effective purchase

cost from a supplier decreases as its capacity increases in the usual stochastic order. With

some algebra, we can rewrite the effective purchase cost from supplier i as

Ci(ci) = ci +
2

b

∫ a−bci
2

0

Gi(r)dr.
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If the capacity of supplier i decreases in the convex order, then it follows from the property

of convex order that
∫ a

0
Gi(r)dr will decrease for any a ((Shaked and Shanthikumar 2007,

3.A.8, p.110). Thus the effective purchase cost from a supplier decreases as its capacity

decreases in the convex order.

Based on Proposition 3.4.13, with the price-setting firm, if a supplier’s capacity is nor-

mally distributed, he can reduce the effective purchase cost by either increasing the capacity

mean or reducing the capacity variance. This result has significant implications for the sup-

pliers. Recall that, in order to become the sole supplier to the firm, the low cost supplier

should reduce the effective purchase cost from him (Corollary 3.4.1). Proposition 3.4.13

offers a prescription on how to reduce the effective purchase cost from him: A supplier can

achieve this not only by purchasing more equipment or hiring more employees, but also by

reducing capacity variability using, for example, the popular Six Sigma methodology.

Next, we examine the case for a price-taking firm. Unlike in the case of the price-setting

firm, the price-taking firm’s effective purchase cost from a supplier is not monotone with

respect to his second-order reliability. For our analysis, we assume the suppliers’ capacities

to satisfy the property that the CDFs of any two convex-ordered random capacities cross

exactly once. The single-crossing property holds in most practical applications. For ex-

ample, it holds when the two convex-ordered capacities belong to the same member of the

location-scale distribution class or the same member of the generalized location-scale distri-

bution class. A distribution F (x, µ, σ) with parameter (µ, σ) is a location-scale distribution if

F (x, µ, σ) = Φ((x−µ)/σ). Examples of location-scale distributions include normal, gamma,

Cauchy, Weibull, t, stable, F , Laplace, extreme value, logistic, beta, uniform, and triangu-

lar. F (x, µ, σ) is a generalized location-scale distribution if F (x, µ, σ) = Φ((κ(x) − µ)/σ),

where κ(·) is an increasing function such as the logarithmic function. The generalized

location-scale distributions include lognormal. See, for example, Zhang (2005) for further

discussions on these two families of distributions.

Proposition 3.4.14 For the price-taking firm, (i) CT
i (ci) decreases as Ri increases in the
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usual stochastic order. (ii) Consider two possible random capacities R1
i and R2

i for supplier

i with the corresponding effective purchase costs CT1
i (ci) and CT2

i (ci), respectively. Assume

that R1
i 6cx R2

i and their distributions cross at µi. Then, if D 6 µi, we have CT1
i (ci) 6

CT2
i (ci); otherwise, CT1

i (ci) > CT2
i (ci).

Proof of Proposition 3.4.14. The first claim follows from the definition of usual stochastic

order and (3.7). Define G1
i (·) and G2

i (·) as the CDFs of R1
i and R2

i respectively. Then,

G1
i (D) > G2

i (D) for D > µi and G1
i (D) 6 G2

i (D) for D 6 µi (see, for example, Wolfstetter

1999, Proposition 4.6, P.143). The second claim follows.

In words, the price-taking firm’s effective purchase cost from a supplier decreases as his

first-order reliability increases. Furthermore, the effective purchase cost decreases (resp.,

increases) as his second-order reliability increases provided that the demand D 6 µi (resp.,

D > µi).

It is interesting to compare and contrast Proposition 3.4.13 with Proposition 3.4.14.

First, in both cases, as the supplier’s first-order reliability increases, the effective purchase

cost decreases, which implies that the diversification zone becomes smaller. Second, while

the price-setting firm’s effective purchase cost decreases as the supplier’s second-order re-

liability increases, this relationship holds for the price-taking firm only when the market

demand is low. Interestingly, when the market demand is high, the price-taking firm’s

effective purchase cost increases as the supplier’s second-order reliability increases. For ex-

ample, when the random capacity is normally distributed so that the capacity variability

is measured by its standard deviation (Shaked and Shanthikumar 2007, 3.A.51, p.137) and

convex-ordered capacity distributions cross at the mean, then by Proposition 3.4.14, a sup-

plier’s reliability (in the eyes of the firm) increases as his capacity variance decreases only

when his capacity mean is greater than the market demand. When the supplier’s capac-

ity mean is less than the market demand, the firm’s diversification zone becomes smaller

when suppliers become more variable, i.e., the firm’s propensity to diversify decreases as

the supplier’s second-order reliability decreases.
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3.4.5 Impact of Supplier Reliability on Optimal Order Quantities

In this subsection, we first investigate how the optimal order quantities in the diversification

zone are affected by a supplier’s wholesale price and reliability, and then examine how the

pricing power of a firm affects the impact of the supplier’s reliability on the firm’s optimal

order quantities.

Proposition 3.4.15 Consider the price-setting firm. (i) In diversification zone I, the op-

timal order quantity from a supplier increases as his wholesale price or his rival’s reliability

decreases, and it decreases as his rival’s wholesale price or his reliability decreases. (ii) In

diversification zone II, the optimal order quantity from a supplier increases only when his

wholesale price decreases or his rival’s reliability decreases. (iii) The total order quantity

decreases when either supplier increases his wholesale price or reliability.

Proof of Proposition 3.4.15. For ease of exposition, the superscript S is removed from

this proof. We define ρi as the indicator of supplier i’s reliability in the sense that a higher

ρi represents a higher level of reliability. When the supplier becomes more reliable as a

result of a stochastically larger capacity, that is, ∂Gi(r, ρi)/∂ρi > 0 and ∂Gi(r, ρi)/∂ρi < 0,

we have:

(i) For i = 1, 2, from a − bci − 2Qi − 2

∫ a−bc3−i
2

−∫ Qi
0 Gi(r,ρi)dr

0

G3−i(r, ρ3−i)dr = 0. The

implicit function theorem gives ∂Qi/∂ci < 0, ∂Qi/∂c3−i > 0, ∂Qi/∂ρi > 0, and ∂Qi/∂ρ3−i <

0.

(ii) From 2

∫ A−Q̂i

0

G3−i(r, ρ3−i)dr − b(ci − γ) = 0, we can obtain ∂Q̂i/∂ci < 0 and

∂Q̂i/∂ρ3−i < 0.

(iii) By Corollary 3.4.1, Q1 + Q2 = (a − bci)/2 +
∫ Q3−i

0
G3−i(r)dr. By claim (i), when

c3−i increases, Q3−i decreases. Therefore, Q1 + Q2 decreases. When supplier i’s reliability

increases,
∫ Q3−i

0
G3−i(r)dr decreases, and thus Q1 + Q2 decreases. By claim (ii), the result

for Q̂1 + Q̂2 follows trivially.



www.manaraa.com

63

When the supplier becomes more reliable by having a smaller capacity variability in

the convex order, then, for any a, we have ∂
∫ a

0
Gi(r, ρi)/∂ρi > 0. The rest can be proved

similarly.

Claims for diversification zone I are intuitive: the order quantity for a supplier will

increase when he reduces his wholesale price or increases his reliability; it will increase

when his rival’s wholesale price increases or his rival’s reliability decreases. However, an

interesting phenomenon occurs when (c1, c2) belongs to diversification zone II, i.e., when

both suppliers’ wholesale prices are low. In this case, the order quantity for a supplier is

affected by his wholesale price and not his reliability, but his rival’s reliability. In other

words, in diversification zone II, a supplier cannot receive a larger order by increasing his

reliability, but he can be hurt by his rival doing so. Nevertheless, when a supplier increases

his reliability, the separating curve Q̂S
1 (c1) + Q̂S

2 (c2) = A shifts downward accordingly and

a point (c1, c2) that was in diversification zone II may turn out to be in diversification zone

I, where the supplier can receive a larger order by increasing his reliability. In summary,

when both suppliers’ wholesale prices are low and close to each other, then a supplier can

receive a larger order by increasing his reliability only after he can bring his reliability up

to a certain level.

Next, we examine the impacts of supplier’s wholesale price and reliability on the price-

taking firm’s optimal order quantity in the diversification zone.

Proposition 3.4.16 Consider the price-taking firm. (i) In diversification zone I, the opti-

mal order quantity from a supplier increases as his wholesale price or his rival’s first-order

reliability decreases, and it decreases as his rival’s wholesale price or his first-order relia-

bility decreases. (ii) In diversification zone II, the optimal order quantity from a supplier

increases when his wholesale price decreases or his rival’s first-order reliability decreases.

Proof of Proposition 3.4.16. (i-ii) By (3.8) and (3.9), it is straightforward to verify the

first two claims by using the definition of usual stochastic order.
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Note that claims (i) and (ii) in Proposition 3.4.15 and Proposition 3.4.16 are similar

in terms of the impacts of wholesale price and first-order reliability on the firm’s order

quantities. In diversification zone II, like in the case for the price-setting firm, the optimal

order quantity from a supplier is affected by his wholesale price and not his reliability, but

his rival’s reliability. Next, we examine how the price-taking firm’s order quantities are

affected by a supplier’s second-order reliability.

Proposition 3.4.17 For i = 1, 2, consider two possible random capacities R1
i and R2

i for

supplier i with the corresponding optimal order quantities QT1
i and QT2

i by the price-taking

firm, respectively. Assume that R1
i 6cx R2

i and their distributions cross at µi. (i) If µi > D,

then in diversification zone I, QT1
i > QT2

i and QT1
3−i 6 QT2

3−i; in diversification zone II,

QT1
i = QT2

i and QT1
3−i 6 QT2

3−i. (ii) If 0 < µi < D, then in diversification zone I, QT1
i > QT2

i

and QT1
3−i 6 QT2

3−i if Gi(µi)(p + δ − ci) 6 G3−i(D − µi)(p + δ − c3−i); QT1
i < QT2

i and

QT1
3−i > QT2

3−i, otherwise. (iii) If 0 < µi < D, then in diversification zone II, QT1
3−i 6 QT2

3−i if

(p + δ − c3−i)/(p + δ − γ) > Gi(µi); QT1
3−i > QT2

3−i, otherwise.

Proof of Proposition 3.4.17. Define G1
i (·) and G2

i (·) as the CDFs of R1
i and R2

i re-

spectively. Then, G1
i (Q) > G2

i (Q) for Q > µi and G1
i (Q) 6 G2

i (Q) for Q 6 µi (see, for

example, Wolfstetter 1999, Proposition 4.6, P.143). (iii.A) If µi > D, since Qi < D, we have

G1
i (Q

T1
i ) 6 G2

i (Q
T1
i ), which implies that G

2

i (Q
T1
i )/G3−i(D − QT1

i ) 6 G
1

i (Q
T1
i )/G3−i(D −

QT1
i ) = (p + δ − c3−i)/(p + δ − ci). From the fact that Gi(Qi)/G3−i(D − Qi) is decreasing

in Qi, we have QT1
i > QT2

i , and QT1
3−i = D − QT1

i 6 D − QT2
i = QT2

3−i. The results can be

proved similarly in the diversification zone II. (iii.B) If 0 < µi < D and Gi(µi)(p + δ− ci) 6
G3−i(D − µi)(p + δ − c3−i), then QT1

i 6 µi. Therefore, G1
i (Q

T1
i ) 6 G2

i (Q
T1
i ), which implies

that G
2

i (Q
T1
i )/G3−i(D − QT1

i ) 6 G
1

i (Q
T1
i )/G3−i(D − QT1

i ) = (p + δ − c3−i)/(p + δ − ci).

From the fact that Gi(Qi)/G3−i(D − Qi) is decreasing in Qi, we have QT1
i > QT2

i , and

QT1
3−i = D −QT1

i 6 D −QT2
i = QT2

3−i. Other claims can be proved similarly.

By Proposition 3.4.17, how a supplier’s second-order reliability affects the price-taking

firm’s optimal order quantities from him and his rival depends on the relationship between
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the market demand and a critical value. When the market demand is relatively small, the

impacts of this supplier’s second-order reliability on the optimal order quantities are the

same as his first-order reliability impacts: as this supplier’s second-order reliability increases,

in diversification zone I, the optimal quantity ordered from this supplier increases and the

optimal quantity ordered from his rival decreases; in diversification zone II, the optimal

quantity ordered from this supplier does not change and the optimal quantity ordered from

his rival decreases. For ease of exposition, we call this phenomenon the regular effect and

the reverse phenomenon the irregular effect. From claims (ii) and (iii) in Proposition 3.4.17,

when the market demand is greater than the critical value, both regular and irregular effects

exist in diversification zones I and II. In order to exhibit these two effects more clearly, we

illustrate Proposition 3.4.17 in Figure 3.2. When {µ1 > D,µ2 > D}, only the regular effect

exists in the diversification zone, therefore we omit this case in Figure 3.2.

In Figure 3.2, diversification zones I and II in Figure 3.1(b) are further divided into

several sub-zones. If a sub-zone in diversification zone I is marked with IRR, then in this sub-

zone, the effects of both suppliers’ second-order reliabilities on the optimal order quantities

are regular. If a sub-zone in diversification zone I is marked with IIR, then in this sub-

zone, the effects of supplier 1’s second-order reliability on the optimal order quantities

are irregular, while the effects of supplier 2’s second-order reliability on the optimal order

quantities are regular. Sub-zones IRI , III , IIRR, IIIR, IIRI , and IIII are defined similarly.

From Figure 3.2, we can clearly see that the irregular effects of a supplier i’s second-order

reliability on the optimal order quantities happen only when µi < D. From Figure 3.2(d),

when µ1 + µ2 6 D, the effects of both suppliers’ second-order reliabilities may be irregular.

Note that the boundaries that separate the regular sub-zones from the irregular sub-zones

are not affected by the suppliers’ second-order reliabilities. When µi < D, in diversification

zone I, whether the effects of supplier i’s second-order reliability are regular depends on the

relative magnitude of both suppliers’ wholesale prices. Specifically, the effects of supplier

i’s second-order reliability are regular if supplier i’s wholesale price is relatively higher than

his rival’s; otherwise, the effects are irregular. In diversification zone II, whether the effects
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of supplier i’s second-order reliability are regular depends only on his rival’s wholesale

price. Specifically, the effects of supplier i’s second-order reliability are regular if his rival’s

wholesale price is low; otherwise, the effects are irregular.

It is interesting to compare and contrast Proposition 3.4.17 with Proposition 3.4.15.

Note that the firm’s pricing power does not change the effects of a supplier’s first-order

reliability on the optimal order quantities. However, the way a supplier’s second-order

reliability affects the optimal order quantities depends on the firm’s pricing power. As a

result, a supplier has to consider the firm’s pricing power when he considers strategies in

improving his reliability to win a larger order from the firm. When the firm is able to adjust

the retail price in response to supply uncertainty, a supplier should always try to reduce his

capacity variability to win a larger order from the firm. However, such an intuitive approach

is not necessarily the best for the suppliers when the retail price is given. Figure 3.2 provides

a guidance for the suppliers. In Figure 3.2(d), for example, when the suppliers’ wholesale

prices fall into sub-zone IIR, to win a larger order from the firm, supplier 1 should increase his

capacity variability while supplier 2 should decrease his capacity variability. By Propositions

3.4.14 and 3.4.17, a low second-order reliability may benefit the supplier in terms of winning

orders from the firm. In other words, the supplier’s second-order reliability may be different

in the eyes of the buyers with different pricing powers.

So far, we have examined the effects of the suppliers’ reliabilities on the effective purchase

costs that bound the firm’s diversification zone as in Figure 3.1 and on the optimal order

quantities within each diversification zone. Next, we examine within the firm’s diversifica-

tion zone, how do the suppliers’ reliabilities affect the curve that separates diversification

zones I and II. By Corollary 3.4.1 and Proposition 3.4.5, the curve is Q̂S
1 (c1) + Q̂S

2 (c2) = A

for the price-setting firm and it is G−1
1

(
c2−γ

p+δ−γ

)
+ G−1

2

(
c1−γ

p+δ−γ

)
= D for the price-taking

firm. To study the impact, without loss of generality, we consider c1 as the independent

variable and c2 as the dependent variable for these two curves.

Proposition 3.4.18 With the price-setting firm, for i = 1, 2, {c2(c1) : Q̂S
1 (c1) + Q̂S

2 (c2) =
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A} decreases as supplier i becomes more reliable in the first or the second order.

Proof of Proposition 3.4.18. We first examine how the curve is affected by supplier

1’s reliability. By Proposition 3.4.15, when c1 and supplier 2’s reliability are fixed, Q̂S
1 (c1)

is fixed, which means Q̂S
2 (c2) has to remain unchanged to ensure that the equality holds.

However, by Proposition 3.4.15, Q̂S
2 (c2) decreases as c2 or supplier 1’s reliability increases.

So, when supplier 1’s reliability increases, c2 must decrease on this curve. Similarly, when

supplier 2’s reliability increases, c2 decreases on this curve.

Proposition 3.4.18 implies that, as a supplier’s first-order or second-order reliability

increases, the price-setting firm’s diversification zone II becomes smaller and the firm’s

propensity to order more than the abundant supply decreases.

Proposition 3.4.19 With the price-taking firm, (i) the curve{
c2(c1) : G−1

1

(
c2−γ

p+δ−γ

)
+ G−1

2

(
c1−γ

p+δ−γ

)
= D

}
decreases as supplier i’s first-order reliability

increases for i = 1, 2; (ii) as supplier 1’s second-order reliability increases, the portions of

this curve that separate sub-zones IRR&IIRR and IRI&IIRI decrease while the portions of this

curve that separate sub-zones IIR&IIIR and III&IIII increase. The impacts of supplier 2’s

second-order reliability are symmetric to supplier 1’s.

Proof of Proposition 3.4.19. (i) Consider the supplier’s first-order reliability only. The

proof is similar to the proof of Proposition 3.4.18 by using the results of Proposition 3.4.16.

(ii) We first examine how the curve is affected by supplier 1’s second-order reliability. By

claim (ii) of Proposition 3.4.17, when c1 and supplier 2’s reliability are fixed, Q̂T
1 (c1) is fixed,

which means Q̂T
2 (c2) has to remain unchanged to ensure that the equality holds. However,

by Proposition 3.4.17, in sub-zone IIRR or IIRI , Q̂T
2 (c2) decreases as c2 or supplier 1’s second-

order reliability increases. So, when supplier 1’s second-order reliability increases, c2 must

decrease on this curve. On the other hand, in sub-zone IIIR or IIII , Q̂T
2 (c2) increases as

c2 decreases or supplier 1’s second-order reliability increases. So, when supplier 1’s second-

order reliability increases, c2 must increase on this curve. The impacts of supplier 2’s

second-order reliability can be proved similarly.
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Comparing and contrasting Proposition 3.4.19 with Proposition 3.4.18, we see that the

effects of the suppliers’ first-order reliabilities on deciding whether the firm should order

more than the abundant supply do not depend on the firm’s pricing power while the effects

of the second-order reliability do. For the price-taking firm, the effects of the suppliers’

second-order reliabilities on deciding whether the firm should order more than the abundant

supply depends on whether the effects of the suppliers’ second-order reliabilities on the

optimal order quantities are regular or irregular. Specifically, if the effects of supplier i’s

second-order reliability on the optimal order quantities are regular (irregular, resp.), then

the firm’s propensity to order more than the abundant supply decreases (increases, resp.)

as supplier i’s second-order reliability increases.

3.5 Concluding Remarks

We consider the diversification problems of price-setting and price-taking firms with two un-

reliable suppliers having random capacities. The related literature considering an exogenous

price and the first-order reliability derives the insight that cost is the order qualifier while

reliability is the order winner, when picking suppliers and deciding on order quantities. The

insight continues to hold in terms of both first- and second-order reliabilities for the price-

setting firm. However, the insight does not hold in terms of the second-order reliability for

the price-taking firm. These results have important implications for a supplier who wants

to win a larger order by adjusting his capacity. With a price-setting firm, a supplier benefits

from his efforts in reducing his capacity variability. On the other hand, with a price-taking

firm, a supplier may, in some cases, lose orders from the firm when his capacity variability

is reduced.

Interestingly, we find that, regardless of a firm’s pricing power, when the wholesale

prices of the suppliers are low, the optimal ordered quantity from a supplier is not affected

by his reliability or his rival’s price, but only affected by his own price and his rival’s

reliability. In this case, the suppliers can receive larger orders by increasing (or decreasing)
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their reliabilities only beyond a threshold reliability level.

We have made several assumptions in this paper to keep the analysis tractable. We have

only considered one specific demand form in this paper. We expect that our results would

carry over to more general demands even though the expression of the effective purchase

cost would be more involved. To focus on the effect of supply uncertainty on the firm’s

sourcing decisions, we have assumed a deterministic demand. It would be of interest to see

if the main insights developed in this paper continues to hold for stochastic demands.
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(a) 0 < µ1 < D, µ2 > D (b) 0 < µ2 < D, µ1 > D

(c) 0 < µ1 < D, 0 < µ2 < D, µ1 + µ2 > D (d) 0 < µ1 < D, 0 < µ2 < D, µ1 + µ2 6 D

Figure 3.2. Effects of the Second-Order Reliability on a Price-Taking Firm’s Optimal Order
Quantities
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CHAPTER 4

STRATEGIC INVENTORIES AND DYNAMIC COORDINATION WITH

PRODUCTION COST LEARNING

4.1 Synopsis

In this chapter, we consider a vertical supply chain framework with one manufacturer and

one retailer. We focus on the impacts of the stochastic learning curve and strategic inventory

on these two players’ strategic and operational decisions. In particular, we are interested in

answering the following questions: (a) How to coordinate the two-period supply chain with

stochastic learning? (b) How does the stochastic learning curve affect the value of strategic

inventory to the retailer, the manufacturer, and the supply chain? (c) How are these results

affected by the holding cost, market potentials, and learning efficiency?

We consider a two-period learning curve model in which the second-period production

cost decreases in the first-period production quantity with some random variation in the

learning rate. We assume that the market potentials in the two periods are arbitrary and not

necessarily of the same size. This generalization allows us to study the impact of relative

magnitude of market potentials on the value of strategic inventory. The manufacturer

and the retailer know the probability distribution of the stochastic learning factor at the

beginning of the first period and the uncertainty of the learning factor is completely resolved

at the end of the first period. To explicitly study the value of strategic inventory, we first

consider the case in which inventory is not allowed to be carried over to the second period.

This situation arises, for example, when the retailer does not have a warehouse to store the

inventory. We then study the case in which inventory is allowed to be carried over to satisfy

the second-period demand. In each case, we characterize the sub-game perfect equilibrium

pricing and ordering decisions. In the end, we compare the channel members’ profits with

71
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and without inventory carryover option and identify the preferred cases for the retailer, the

manufacturer, and the supply chain.

A decentralized supply chain suffers from double marginalization effect and produces

less than the optimal quantity. Suboptimal production results in insufficient cost reduction

as the learning curve is not fully utilized. The higher is the potential of cost learning, the

more severe is the double marginalization. Therefore, we expect that double marginalization

becomes more severe in the context of learning. As expected, we find that the retail price

in each period is higher in the decentralized channel than that in the centralized channel;

production quantities and supply chain profits are lower in the decentralized channel than

those in the centralized channel. Furthermore, the changes in retail prices, production

quantities, and profits increase in the average learning rate and the uncertainty in the

learning rate. Revenue-sharing (RS) contract is known to coordinate the static supply

chain and therefore achieve full channel efficiency. We investigate whether RS contracts

coordinate the two-period dynamic supply chain and if so, how the contract parameters and

production learning efficiency parameter affect the coordinating contracts and the split of

profits between supply chain members in the two periods.

We first present the feedback equilibrium prices and quantities and coordinating RS

contracts assuming no inventory carry-over option. The coordinating RS contracts require

that the wholesale price in Period 2 to be proportional to the production cost in Period 2

while the coordinating wholesale price in Period 1 to be a function of the two revenue-sharing

rates of both periods. The two-period RS contracts bring more flexibility to the channel

members when negotiating over the contract parameters. We then generalize the model by

allowing the units left over from the first period to meet demands in the second period.

Even when allowed to carry inventories, the retailer will do so only if certain conditions are

satisfied. We compare the results with inventory carryover option with those without the

option. We also investigate the coordinating RS contracts under inventory-carryover and

compare the contracts with and without inventory carry-over option. We find that when

inventory is allowed to be carried over, the manufacturer has less flexibility in selecting the
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coordinating RS contracts.

We show that when inventories are allowed, in equilibrium, they are carried under certain

conditions. When the market is symmetric, inventories are not carried in a centralized

channel while they may be carried in a decentralized channel. Consider a special case when

the learning curve effect is absent and market is symmetric. Inventories are not carried

even though they are allowed while they are carried in the decentralized channel when the

inventory holding cost is low. The manufacturer’s profit is always higher when inventories

are allowed than that when they are not. However, depending on the holding costs, the

retailer’s and supply chain’s profits may be greater or smaller with inventories. For a low

inventory holding cost, the retailer’s and channel’s profits are greater when inventories are

allowed than those when inventories are not allowed. For a medium inventory holding cost,

the retailer and supply chain are better off when inventories are not allowed to be carried

over than when they are. Two questions arise at this point. (a) Why would the retailer

carry inventories when he would be better off when inventories are not allowed? (b) Why

are the retailer and supply chain worse off with inventories while the manufacturer is always

better off with inventories? This chapter addresses these questions.

The rest of the paper is organized as follows. Section 4.2 provides a survey of related

research. Section 4.3 introduces the assumptions and setup of the model. Section 4.4

provides the model in which the inventory is not allowed to carry over from Period 1 to

Period 2. We allow the inventory carry-over in section 4.5. Section 4.6 examines the value

of strategic inventory. Section 4.7 provides concluding remarks.

4.2 Literature Review

The phenomenon of learning-by-doing, i.e., the reduction of production cost through re-

peated production, has been well observed in many industries. An early work by Wright

(1936) found that the direct labor cost fell by 20% with every doubling cumulative pro-

duction in the aerospace industry. Subsequent studies have shown that learning curve



www.manaraa.com

74

phenomena exists in various industries (Baloff 1971, Yelle 1979, Hatch and Mowery 1998).

A few papers have focused on the economic impacts of spillover learning effects on market

structure, competitive behavior, capital investment, trade policies, and intertemporal exter-

nality in production (Arrow 1962, Spence 1981, Fudenberg and Tirole 1983, Dasgupta and

Stiglitz 1988). Applications of the learning curve in the operations management include

optimal production planning under uncertainty (Mazzola and McCardle 1996, Mazzola and

McCardle 1997, Majd and Pindck 1989, Özer and Uncu 2012), inventory and production

decisions under joint demand and cost learning (Jøgensen et al. 1999), capacity expansion

(Hiller and Shapiro 1986), lot sizing (Karwan et al. 1988, Chand and Sethi 1990, Tzur

1993).

To capture the dynamic nature of production cost learning, we consider a two-period

model with linear demand and learning in which the second-period production cost de-

creases linearly in the first-period production quantity with uncertainty in the efficiency of

learning, i.e., a random learning rate. A few papers have incorporated uncertainty into the

learning process. Mazzola and McCardle (1996, 1997) introduce random variation in the

(exponentially) decreasing cost models. Mazzola and McCardle (1996) show that results

with stochastic learning differ from those with deterministic learning: in some stochastic

models, the optimal production exceeds the myopic production, a key result from the deter-

ministic learning literature; in other stochastic models, this result does not hold. Mazzola

and McCardle (1997) combine two types of learning: cost learning through a learning curve

with a random learning rate and Bayesian learning regarding the parameters of the cost

function. They show that the result – optimal production increases with cumulative pro-

duction – does not hold in the presence of Bayesian learning. Alvarez and Amman (1999)

assume a stochastic learning-by-doing process and focus on estimating the stochastic cost

structure during the production process. There are linear learning models in which the

production costs (or the deterministic component of cost) are linearly decreasing in the pro-

duction volume (Fudenberg and Tirole 1983, Alvarez and Amman 1999). Others have used

nonlinear models in which the (deterministic component of) costs decrease exponentially
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with cumulative production (Arrow 1962, Baloff 1971, Mazzola and McCardle 1996, 1997).

Most of the previous research in the stream of learning curve studies the implications

and policies from a monopolistic manufacturing firm’s perspective. We extend the applica-

tions of learning curve effect to a dynamic and decentralized vertical supply chain. We are

particularly interested in the impacts of learning curve on strategic inventory and dynamic

channel coordination. Strategic inventories are carried not for operational reasons but for

strategic considerations. Previous research has shown that strategic inventories play im-

portant role in horizontal and vertical competitions. Saloner (1996) considers a two-period

duopoly model in which firms make their production decisions in the first period and their

sales decisions in the second period. Firms may carry unsold units from the first period

to satisfy the second-period demand. The first-mover advantage cannot be achieved if the

firm cannot credibly commit to selling its entire production in the first period. Invento-

ries serve as a commitment to achieve the first-mover advantage. Rotemberg and Saloner

(1986) consider a duopoly model in which strategic inventories are used to sustain collusive

profits by the threat of reversion to competitive behavior. These two papers study strategic

inventories in horizontal competition. Anand et al. (2008) study vertical competition in a

decentralized two-period supply chain with one buyer and one supplier. By carrying strate-

gic inventories, the buyer induces supply-side competition between the supplier and buyer’s

inventories in the second period. Therefore, the buyer effectively forces the supplier to lower

the second-period wholesale price, which reduces the level of double marginalization. Erhun

et al. (2008) study the dynamic pricing/procurement strategy with both market demand

uncertainty and supply capacity constraint in a two-period model setup.

We show that with the presence of learning curve effect, the double marginalization prob-

lem gets more severe, which motivates the dynamic supply chain coordination. Although

there are a vast number of papers studying the supply chain coordination with static models,

very few papers investigate the supply chain coordination in dynamic environments (Lee

et al. 2000, Taylor 2001, Linh and Hong 2009, Oh and Özer 2012). The dynamics in Lee

et al. (2000) and Taylor (2001) come from declining retail prices. Assuming two buying
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opportunities and exogenous wholesale prices, Lee et. al. (2000) show that price protection

cannot guarantee channel coordination. Taylor (2001) examines price protection and re-

turns policies as channel coordination mechanisms. He finds that end-of-life returns achieve

channel coordination but the manufacturer is worse off. The combination of policies of price

protection and returns can result in both the channel coordination and a win-win situation

for channel members. Linh and Hong (2009) consider a two-period newsvendor supply chain

and show that revenue sharing contracts can coordinate the dynamic supply chain. Revenue

sharing contracts have been widely used in the operations management literature and are

known to coordinate the static supply chains in one-period setup (Gerchak and Wang 2004,

Cachon and Lariviere 2005, Gerchak et al. 2006). In this paper, we use revenue sharing

contracts to coordinate a decentralized supply chain with stochastic production cost learn-

ing curve. We find that revenue sharing contracts coordinate the two-period supply chain

whether inventories are allowed or not. While Lihn and Hong assume the same revenue

sharing rate for two periods, we allow the sharing rates to be general. When inventories

are carried, the revenue sharing contracts under such situations are less flexible than when

inventories are not allowed or not carried. We also provide insights on the trade-off between

the revenue sharing rate and the coordinating wholesale price in each period.

4.3 A Two-Period Model Setup

Consider a supply chain in which the manufacturer produces a product and sells it through

a retailer in multiple selling seasons (periods). Due to the learning curve effect, the man-

ufacturer’s per unit production cost declines with previous production experience. This

assumption is particularly appropriate for the industries that are in the infant stage. When

the industry reaches the mature stage, the learning effect may become less significant and

even disappear.

To explicitly study the dynamic nature of production cost learning, we assume there are

two production and selling periods. In practice, production can occur in many periods. Our



www.manaraa.com

77

learning curve model can be generalized for any finite number of periods. Two-period models

have been used widely in the learning curve literature (for example, Spence 1981, Fudenberg

and Tirole 1983, and Dasgupta and Stiglitz 1988). The manufacturer incurs a production

cost of ci in Period i, i = 1, 2. The second period production cost decreases linearly in

the production quantity in the first period with some uncertainty in the learning rate, i.e.,

the manufacturer is not certain about at which rate he can reduce the production cost in

Period 2. Mazzola and McCardle (1997) consider a stochastic model of learning curve with

random variation whose distribution is known. Mazzola and McCardle (1996) also study the

stochastic learning curve effect but the firm has uncertainty regarding the distribution of

the variation in production costs. While the random variation is additive in their log-linear

model, the variation in our model comes from the learning rate. Let γ̃ = γx denote the

stochastic learning rate, where γ is the deterministic component of the learning rate that

captures the efficiency of learning and x ∈ [0, 1], is the random component. The random

variable x has a probability density function (pdf) of f(x) with a mean µ ≡ ∫ 1

0
xf(x)dx

and a variance σ2 ≡ ∫ 1

0
x2f(x)dx − µ2. Therefore, the second period production cost can

be written as c2(x) = c1− γ̃q1 = c1− xγq1, where q1 is the first-period production quantity.

Accordingly, we have the expected learning rate E[γ̃] = µγ and the expected second-period

production cost E[c2(x)] = c1−µγq1. The higher the µ or γ is, the faster the manufacturer

can learn (i.e., the more efficient in production cost reduction). The uncertainty in the

learning rate is completely resolved at the end of first period.

The retailer’s problem is to decide the order quantity and the retail price in each period.

The manufacturer’s problem is to decide the wholesale price in each period. Wholesale and

retail prices and the order quantities are determined in a Stackelberg game in which the

manufacturer is the leader and the retailer the follower. Motivated by the declining retail

prices and manufacturing cost in the technology-related industries, Lee et. al. (2000) and

Taylor (2001) allow the retailer to have two ordering opportunities but retail prices are

exogenously set.

The supply chain operates in a make-to-order environment: at the beginning of period
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i (i = 1, 2), the retailer orders qi units of the product and the manufacturer produces to

satisfy the retailer’s orders. Let pi be the retailer’s selling price in Period i = 1, 2. The

sales in Period i are Di(pi) = ai − bpi, where ai is the market potential in Period i = 1, 2,

and b captures the customers’ price sensitivity to the retail price pi. Anand et al.(2008)

use a similar linear demand function but assume the market potentials are symmetric, i.e.,

a1 = a2.

We first assume that inventories are not allowed to be carried over so the retailer orders

exactly to satisfy the current period’s demand, i.e., qi = Di(pi), i = 1, 2. We then relax this

assumption and allow the unsold units from the first period to satisfy the demand in the

second period. In the latter case, the retailer may order more than the first period demand,

i.e., q1 > D1(p1) and carry the leftover units I2 = q1 − D1(p1) to the second period. We

assume that the unmet demands are lost in each period.

We assume that the manufacturer and the retailer are both forward-looking (far-sighted)

profit maximizers. In the first period, the manufacturer and the retailer each maximizes the

total profit obtained from both periods. In a two-period model, one important assumption

is that when the wholesale prices w1 and w2 are both announced in the first period, whether

the manufacturer commits to the announced prices. Anand et al. (2008) study both the

dynamic contract and commitment contract. Under the latter contract, the supplier quotes

wholesale prices w1 and w2 at the beginning of the horizon. In this chapter, we focus

on the dynamic contract under which the manufacturer sequentially announces wholesales

prices w1 and w2 at the beginning of each period. Correspondingly, we seek the feedback

equilibrium strategies which are subgame-perfect.

Throughout the paper, we make the following assumptions regarding the parameter val-

ues:

ASSUMPTION 1 (A1). ai − bc1 > 0, for i = 1, 2.

ASSUMPTION 2 (A2). c1 − aiγ > 0, for i = 1, 2.

(A1) ensures that the demand and the production quantities in both periods are posi-

tive. (A2) requires that the learning parameter γ is in an appropriate range so that the
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second-period production cost remains positive in the equilibrium. Note that with these

two assumptions, one can easily verify that 0 < bγ < 1.

4.4 Inventory Not Allowed

In this section, we consider the case in which inventories are not allowed. This could

happen when the retailer does not have physical capacity (for example, warehouse or storage

rooms). Both the manufacturer and the retailer know that no inventory will be carried

before the game starts and they make decisions accordingly. The manufacturer produces

exactly what the retailer orders in each period and there is no capacity constraint (i.e., the

manufacturer’s capacity is infinite). We derive the equilibrium pricing and ordering polices

for the centralized channel and then the decentralized channel. We compare the results

from centralized channel with those from the decentralized channel. We are interested

in examining how the learning curve affects the double marginalization and determining

whether revenue sharing contracts can coordinate the dynamic decentralized channel. When

coordination is achieved, how do the revenue sharing rates affect the coordinating dynamic

wholesale price terms and how do they affect the the splitting of profit between the two

parties.

4.4.1 The Centralized Channel

We begin the analysis by considering a centralized (integrated) channel in which the man-

ufacturer and the retailer are under the same ownership. This centralized channel serves as

the benchmark for the decentralized channel in which the retailer is independent from the

manufacturer as we will explore subsequently. Let π be the centralized channel’s total profit

over the two periods, and π2(x) be the channel’s profit in Period 2, given that the learning

rate is x (Recall that the learning rate x is stochastic). In the case of deterministic demand

and no inventory allowed, there is an one-to-one mapping between the retail price pi and the

order quantity qi. We select the retail price pi to be the decision variables for the centralized
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channel (for the retailer in the decentralized channel). The optimal order quantity qi can

be determined accordingly. The integrated channel solves the following dynamic program:

π∗ = max
p1

{π = (p1 − c1) (a1 − bp1) + E[π∗2(x)]} , (4.1)

π∗2(x) = max
p2

{π2(x) = (p2 − c2(x)) (a2 − bp2)} , (4.2)

where c2(x) = c1− q1γx = c1− (a1− bp1)γx and E[π∗2(x)] =
∫ 1

0
π∗2(x)f(x)dx. The dynamics

in this model come from the cost learning effect.

Proposition 4.4.1 When inventories are not allowed to be carried, the equilibrium retail

prices p∗1 and p∗2, the production quantities q∗1 and q∗2, and the second-period production cost

c∗2 are summarized in Table 4.1.

Table 4.1. Equilibrium Prices and Quantities in a Centralized Channel

Inventory Not Allowed Inventory Allowed

p∗1
2(a1+bc1)−b(a2−bc1)γµ−a1b2γ2(µ2+σ2)

b(4−b2γ2(µ2+σ2))
4µ(a1+bc1)−bγ((3a1+a2)µ2+(a1+bc1)σ2)−bh(2µ−bγ(µ2+σ2))

2b[4µ−bγ(2µ2+σ2)]

q∗1
2(a1−bc1)+bγµ(a2−bc1)

4−b2γ2(µ2+σ2)
γµ(a1+a2−2bc1)−(2−bγµ)h

γ[4µ−bγ(2µ2+σ2)]

p∗2
(4−b2γ2σ2)(a2+bc1)−2bγµ(a1−bc1)−2a2b2γ2µ2

2b(4−b2γ2(µ2+σ2))

4µ(a2+bc1)−bγ[(a1+3a2)µ2+(a2+bc1)σ2]+bµh(2−bγµ)

2b[4µ−bγ(2µ2+σ2)]

q∗2
(4−b2γ2σ2)(a2−bc1)+2bγµ(a1−bc1)

2(4−b2γ2(µ2+σ2))
γ(2µ−bγσ2)(a1+a2−2bc1)+(4−2bγµ−b2γ2σ2)h

2γ[4µ−bγ(2µ2+σ2)]

c∗2
(4−b2γ2σ2)c1−2γµ(a1−bc1)−a2bγ2µ2

4−b2γ2(µ2+σ2)
4c1µ−(a1+a2)γµ2−bc1γσ2+(2−bγµ)µh

4µ−bγ(2µ2+σ2)

All proofs appear in the section 4.8. We subsequently compare them with the results

from the decentralized channel. Furthermore, when designing the coordinating revenue

sharing contracts, we use the above results as the benchmark case.

4.4.2 Decentralized Channel

Now we consider a decentralized channel in which the manufacturer and the retailer are

under different ownership so that the two parties make independent decisions. The man-

ufacturer announces the wholesale prices sequentially in each period. The sequence of the

events is as follows. In the first period, the manufacturer announces the wholesale price w1.
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The retailer decides the retail price p1 and the order quantity q1. The manufacturer pro-

duces q1 at a cost of c1 per unit. The retail market clears in the first period. Meanwhile, the

learning rate and hence the production cost c2 are resolved at the end of the first period. In

the second period, the manufacturer announces the wholesale price w2. The retailer decides

the retail price p2 and the order quantity q2. The manufacturer produces q2 and the retail

market clears in the second period.

In the second period, given the realized learning rate x, the manufacturer and the retailer

each solves the following problems:

π∗r2(x) = max
p2

[πr2 = (p2 − w2)(a2 − bp2)] , (4.3)

π∗m2(x) = max
w2

[πm2 = (w2 − c2(x)) (a2 − bp2(w2))] , (4.4)

where c2(x) = c1 − γxq1 and p2(w2) is the retailer’s best response retail price in Period 2.

In the first period, the retailer and the manufacturer each maximizes the total profit from

two periods:

π∗r = max
p1

{
πr(p1) = (p1 − w1)(a1 − bp1) +

∫ 1

0

π∗r2(x)f(x)dx

}
,

π∗m = max
w1

{
πm(w1) = (w1 − c1) (a1 − bp1) +

∫ 1

0

π∗m2(x)f(x)dx

}
,

where πr2(x) and πm2(x) are given by (4.3) and (4.4), respectively. In contrast to a forward-

looking objective, a myopic policy is to maximize the current period profit. Mazzola and

McCardle (1997) analyze both the myopic and optimal (forward-looking) production policies

in the presence of learning curve effect.

We derive the unique subgame-perfect feedback equilibrium prices and order quantities

in each period and the second-period production cost in the following proposition.

Proposition 4.4.2 When inventories are not allowed, the equilibrium retail prices, the

production quantities, and the second-period production cost are listed in Table 4.2.

Under assumptions (A1) and (A2), it can be easily verified that w∗
1 > 0, w∗

2 > 0, p∗1 > 0,

p∗2 > 0, q∗1 > 0, q∗2 > 0, and c∗2 > 0.
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Table 4.2. Equilibrium Results in a Decentralized Channel

Inventory Not Allowed

Retail price p∗1
8(3a1+bc1)−bγ[3µ(a2−bc1)+4a1bγ(µ2+σ2)]

4b[8−b2γ2(µ2+σ2)]

Quantity q∗1
8(a1−bc1)+3bγµ(a2−bc1)

[8−b2γ2(µ2+σ2)]

Wholesale price w∗
1

1
32b

{
8 (3a1 + bc1) + bγµ(a2 − bc1)− 8[8(a1−bc1)+3bγµ(a2−bc1)]

8−b2γ2(µ2+σ2)

}

Retail price p∗2
1

16b

{
4 (3a2 + bc1)− bγµ[8(a1−bc1)+3bγµ(a2−bc1)]

8−b2γ2(µ2+σ2)

}

Order quantity q∗2
(32−b2γ2(µ2+4σ2))(a2−bc1)+8bγµ(a1−bc1)

16[8−b2γ2(µ2+σ2)]

Wholesale price w∗
2

1
8b

{
4 (a2 + bc1)− bγµ[8(a1−bc1)+3bγµ(a2−bc1)]

8−b2γ2(µ2+σ2)

}

Production cost c∗2
c1[32+bγ(µ(8−bγµ)−4bγσ2)]−γµ(8a1+3a2bγµ)

4[8−b2γ2(µ2+σ2)]

Proposition 4.4.3 (i) pD∗
1 > pC∗

1 , qD∗
1 < qC∗

1 , pD∗
2 > pC∗

2 , qD∗
2 < qC∗

2 , cD∗
2 > cC∗

2 , πD∗
c < πC∗

c .

(ii) The comparative statics with regard to µ and σ are: ∂(pD∗
1 − pC∗

1 )/∂µ > 0, ∂(pD∗
1 −

pC∗
1 )/∂σ > 0, ∂(qC∗

1 − qD∗
1 )/∂µ > 0, ∂(qC∗

1 − qD∗
1 )/∂σ > 0, ∂(pD∗

2 − pC∗
2 )/∂µ > 0, ∂(pD∗

2 −
pC∗

2 )/∂σ > 0, ∂(qC∗
2 − qD∗

2 )/∂µ > 0, ∂(qC∗
2 − qD∗

2 )/∂σ > 0, ∂(cD∗
2 − cC∗

2 )/∂µ > 0, ∂(cD∗
2 −

cC∗
2 )/∂σ > 0, ∂(πC∗

c − πD∗
c )/∂µ > 0, ∂(πC∗

c − πD∗
c )/∂σ > 0.

Not surprisingly, the retailer charges higher prices in each period in the decentralized chan-

nel than those in the centralized channel due to the well-known double marginalization

effect. Accordingly, the production/order quantities are lower in the decentralized channel.

Suboptimal production in the first period leads to insufficient learning in the first period. In

other words, cost reduction opportunities due to volume learning cannot be fully utilized in

the decentralized channel. The efficiency loss, i.e., the profit difference (E[πC∗
c ] − E[πD∗

c ]),

is increasing in the learning rate mean µ and standard deviation σ. The faster the man-

ufacturer learns (larger µ) or the more unstable the learning impact becomes(larger σ),

the more severe is double marginalization. Proposition 4.4.3 highlights the importance of

channel coordination in the dynamic decentralized supply chain when learning curve ef-

fect is present as learning can magnify the efficiency loss. We next explore whether the

revenue sharing contracts, a commonly used coordination mechanism, can coordinate the

decentralized channel and restore supply chain efficiency.
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4.4.3 Revenue-sharing Contract

Suppose the manufacturer and the retailer agree to use a revenue sharing contract at the

beginning of the horizon. Under such a contract, the manufacturer sequentially proposes

two pairs of wholesale price and revenue sharing rate {w1, φ1} and {w2, φ2}, 0 6 φ1, φ2 6 1,

to the retailer, where φi is the retailer’s portion of the revenue in Period i = 1, 2. The

retailer pays a wholesale price of wi per unit in period i. With a revenue-sharing term

{w2, φ2}, the retailer’s and the manufacturer’s second-period profit functions are:

πr2(x) = (φ2p2 − w2(x))(a2 − bp2) (4.5)

πm2(x) = [(1− φ2)p2 + w2 − c2(x))] (a2 − bp2). (4.6)

The first-period profit functions to the manufacturer and the retailer are given by:

πr = (φ1p1 − w1) (a1 − bp1) +

∫ 1

0

π∗r2(x)f(x)dx,

πm = [(1− φ1)p1 + w1 − c1] (a1 − bp1) +

∫ 1

0

π∗m2(x)f(x)dx.

where πr2(c) and πm2(x) are given by (4.5) and (4.6), respectively. We use the centralized

channel in Section 4.1 as the benchmark case. We refer to the scenario as full channel

coordination when the total profit in a decentralized channel is equal to that in the integrated

channel. Theorem 4.4.4 shows that properly designed revenue sharing contracts can fully

coordinate the two-period dynamic supply chain.

Theorem 4.4.4 For φ1, φ2 ∈ [0, 1], let the manufacturer set the wholesale prices as

w∗
1 = φ1c1 +

(φ2 − φ1)γ [2µ (a2 − bc1) + (a1 − bc1)bγ(µ2 + σ2)]

4− b2γ2(µ2 + σ2)

and w∗
2(x) = φ2c

∗
2(x) = φ2(c1 − xγq∗1) for any given learning rate x, where q∗1, specified in

Proposition 4.4.1, is the equilibrium first-period production in the centralized channel when

inventories are not allowed. Then, the revenue sharing contract coordinates the supply chain.

Moreover, if φ1 = φ2 = φ, then w∗
1 = φc1 and w∗

2(x) = φc∗2(x).
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Without inventory, the retailer’s portions of revenue, sharing rates φ1 and φ2, can be

arbitrarily selected and they do not need to be the same in two periods. This implies that

the coordinating revenue sharing contract arbitrarily splits the channel profit between the

manufacturer and the retailer, a similar observation made by Cachon and Lariviere (2005)

in a static supply chain with a single revenue sharing rate. Note that the coordinating

policies are obtained when the behaviors parameters of the independent retailer are equated

with those of the centralized channel. Under a two-period revenue sharing contract, the

manufacturer has four degrees of freedom in specifying the coordinating contract (the two

wholesale prices and the two two revenue sharing rates), which are sufficient to equate the

two parameters that govern the retailer’s behavior (the retail prices in Periods 1 and 2).

Hence, there are two additional degrees of freedom to coordinate the two-period channel.

One implication of Theorem 1 is that the two parties could negotiate over two revenue

sharing rates and they have additional flexibility to balance the profit from the first and

second periods. One may conjecture that in coordination, as the manufacturer offers more

favorable sharing rates (i.e., as φ1 and φ2 increase), he also increases the wholesale prices

w∗
1 and w∗

2. In other words, does the retailer always have to pay higher wholesale prices

in exchange for higher shares of the revenue? How do the revenue sharing rates affect the

splitting of the profit between the channel members? Next proposition provides the answers

to these questions.

Proposition 4.4.5 ∂w∗
1/∂φ1 > 0, ∂w∗

1/∂φ2 > 0, ∂w∗
2/∂φ1 = 0, ∂w∗

2/∂φ2 > 0, ∂π∗r/∂φ1 =

−∂π∗m/∂φ1 > 0. If a2 > Φ(c1) ≡ bc1+
2bc1(1−bγ)

√
µ2+σ2

4−b2γ2(µ2+σ2)−b2γ2µ
√

µ2+σ2
, then ∂π∗r/∂φ2 = −∂π∗m/∂φ2 >

0. If a2 < Φ(c1) and a1 6 Ψ(a2) ≡ bc1 +
(a2−bc1)

[
4−b2γ2(µ2+σ2)−b2γ2µ

√
µ2+σ2

]

2bγ
√

µ2+σ2
, then ∂π∗r/∂φ2 =

−∂π∗m/∂φ2 > 0. If a1 > Ψ(a2), ∂π∗r/∂φ2 = −∂π∗m/∂φ2 < 0.

The coordinating first-period wholesale price is increasing in the revenue sharing rates

in each period which reflects the balance between a revenue portion and the wholesale

price. The second-period wholesale price is independent of φ1 while it is increasing in the
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second-period revenue sharing rate φ2. The impact of first-period revenue sharing rate on

the channel member’s profit is implicit: the manufacturer’s (retailer’s) profit is decreasing

(increasing) in φ1. The reason is that the manufacturer increases the first-period wholesale

price in the association of a higher portion of revenue for the retailer, but he is unable to

increase the second-period wholesale price. The manufacturer is worse off with a higher φ1.

The impact of second-period revenue sharing rate on π∗m and π∗r is undetermined. One

may conjecture that the retailer is better off when she receives a higher portion of the

revenue in the second period. We find that this intuition holds in the regular case where the

second-period market size is medium or large and the first period market size is not very

large. However, in an irregular case when the first-period market size is sufficiently large as

shown in Figure 4.1, the retailer’s profit decreases in the second-period revenue sharing rate.

This happens because with an increase in φ2, the manufacturer increases w2 as well as w1.

In addition to that, when a1 is very large, the retailer’s benefit of getting a large portion of

second-period revenue is overly mitigated by the prices she has to pay to the manufacturer.

So she actually can be better off with a lower φ2. This phenomenon happens only when the

learning effect exists, i.e., γ, µ > 0. If there is no learning effect, the retailer’s profit always

increases in the second-period revenue sharing rate.

In a dynamic setting, the channel members need to be aware of the intertemporal effects

of the revenue sharing rates.

4.5 Inventory Allowed

In this section, we allow the retailer to carry over inventory so that the retailer can order

an amount that is larger than the demand in the first period, i.e., q1 > D1 = a1 − bp1. The

inventory is carried to satisfy the second-period demand with an inventory holding cost h

per unit. Without loss of generality, we assume that the inventory level at the beginning

of Period 1 is zero, i.e., I1 = 0. The retailer orders q1 from the manufacturer in Period

1. Backlog is not allowed, i.e., the retailer cannot sell more than what the manufacturer
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Figure 4.1. Impact of Second-Period Revenue Sharing Rate φ2

produces in each period. If the available units are more than the demand in Period 1, i.e.,

q1 > D1, then the retailer has an inventory I2 = q1 − D1 on hand at the beginning of the

second period. Otherwise, the retailer sells to satisfy the first period demand and carries no

inventory to Period 2. We are particularly interested in determining when it is optimal for

the retailer to carry over inventory. When the inventory is carried over, we are interested

in how the parameters affect the optimal inventory level. We investigate in what terms the

revenue sharing contracts can coordinate the channel with inventory carry-over.

4.5.1 The Centralized Channel

In Period 1, the centralized channel sets the retail price p1 and decides on the production

quantity q1. In Period 2, given the initial stock I2 and the realized learning rate x, the

centralized channel chooses the second-period retail price p2 and decides on the second-

period production quantity q2. Let [y]+ = max{y, 0}. The integrated channel’s dynamic
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optimization problems in two periods are given by:

π∗ = max
p1>0,q1>0

{
π (x) = p1(a1 − bp1)− c1q1 +

∫ 1

0

π∗2(x)f(x)dx

}
(4.7)

π∗2(x) = max
p2>0,q2>0

{
π2 (x) = p2(a2 − bp2)− c2(x)q2 − h[I2]

+
}

(4.8)

where c2 = c1 − γxq1 and I2 = q1 − (a1 − bp1).

Lemma 4.5.1 presents the inventory threshold, the point at which the centralized channel

moves from I∗2 = 0 to I∗2 > 0.

Lemma 4.5.1 The inventory threshold in the centralized channel

Scn = −h
[
4− b2γ2(µ2 + σ2)

]
+ γ

[
µ(a2 − a1)(2− bγµ) + bγσ2(a1 − bc1)

]
. (4.9)

(a) If Scn > 0, then

I∗2 =
Scn

2γ [4µ− bγ(2µ2 + σ2)]
> 0.

The corresponding equilibrium retail prices and production quantities in each period and

the second-period production cost are summarized in the third column of Table 4.1.

(b) If Scn < 0, then I∗2 = 0, and the problem reduces to that when inventories are not

allowed.

We have a few observations. First, when the learning curve effect is absent, i.e., γ = 0,

the centralized channel does not carry inventory. Second, when the learning effect exists,

inventories may be carried. Third, the threshold Scn is increasing in σ. This implies that the

centralized channel is more likely to carry inventories when the efficiency of learning is less

predictable (a high σ). When the market sizes are symmetric, i.e., a1 = a2, the inventories

are not carried.



www.manaraa.com

88

4.5.2 Decentralized Channel

The manufacturer sets the wholesale price in Period 2. Given that its initial stock (before

purchase) in Period 2 is I2 and the announced wholesale price, the retailer decides on retail

price p2 and order quantity q2. The retailer and the manufacturer’s second period problems

are:

π∗r2(x) = max
p2>0,q2>0

{πr2(x) = p2(a2 − bp2)− w2q2 − h[I2]
+} (4.10)

π∗m2(x) = max
w2>0

{πm2 = (w2 − c2(x))
(
a2 − bp2 − [I2]

+
)} (4.11)

where c2 = c1−q1γx, q2 = a2− bp2− [I2]
+, and I2 = q1− (a1− bp1). Since the second-period

demand is deterministic and it is the ending selling period, there is an one-to-one mapping

between the retail price and the demand. Again, we choose its retail price as the decision

variable. In the first period, the retailer chooses the order quantity and retail price while

the manufacturer decides on the wholesale price:

π∗r = max
p1>0,q1>0

πr (p1, q1) = p1(a1 − bp1)− w1q1 +

∫ 1

0

π∗r2(x)f(x)dx

π∗m = max
w1>0

πm (w1) = (w1 − c1)q1 +

∫ 1

0

π∗m2(x)f(x)dx

where πr2(x) and πm2(x) are given by (4.10) and (4.11), respectively. Similar to the central-

ized channel, Lemma 4.5.2 presents the inventory threshold for the decentralized channel,

the point at which the retailer moves from I∗2 = 0 to I∗2 > 0.

Lemma 4.5.2 The inventory threshold in the decentralized channel is

Sd = −bh
[
160 + 32bγµ− b2γ2

(
31µ2 + 28σ2

)]

+(a2 − bc1)
[
40 + 28bγµ + b2γ2(2µ2 + 7σ2)

]

+ (a2 − a1)
[
48 + 46bγµ− b2γ2

(
31µ2 + 28σ2

)]

(a) If Sd > 0, the retailer carries inventory

I∗2 =
Sd

2 [136 + 120bγµ− b2γ2(60µ2 + 49σ2)]
> 0.
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The corresponding equilibrium retail and wholesale prices, production quantities in each

period and the second-period production cost are summarized in the Appendix.

(b) If Sd < 0, then I∗2 = 0. The equilibrium results are the same as those when inventories

are not allowed.

Recall that in the centralized channel, when γ = 0, inventories are not carried even though

they are allowed. In contrast, in the decentralized channel, the retailer may carry inventory

even when there is no learning curve effect3. Under such occasions, inventories arise not for

the classical reasons but for strategic considerations, a result obtained by Anand et al. (2008)

for a special case of our problem with γ = 0 and a1 = a2. Strategic inventories are used

by the retailer to curtail the second-period monopoly power of the supplier. When learning

effect does exist, we conjecture that these insights continue to hold. We shall investigate

the values of strategic inventories to the channel members in the context of learning effect.

4.5.3 Revenue Sharing Contract

It is more challenging to achieve channel coordination (first-best scenario) in a dynamic

setting as the retailer has more decisions to make. Anand et al. (2008) show that the two

part-tariff contract (a contract with a fixed fee and a wholesale price) cannot achieve the

first best solution because the buyer carries inventory. We now consider the revenue sharing

contracts that can coordinate the dynamic supply chain with learning effect and when the

retailer is allowed to carry inventory.

The retailer’s problems in Period 1 and Period 2 are given by:

π∗r = max
p1,q1>0

{
πr = φ1p1(a1 − b1p1)− w1q1 +

∫ 1

0

π∗r2(x)f(x)dx

}

π∗r2(x) = max
p2,q2>0

{
πr2(x) = φ2p2(a2 − b2p2)− w2(x)q2 − h[I2]

+
}

where I2 = q2 − (a2 − b2p2).

3When γ = 0 and 88a2 − 48a1 − 40bc1 > 160bh, the retailer carries inventory in the equilibrium.
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The manufacturer’s profit functions are given by:

πm = (1− φ1)p1(a1 − b1p1) + (w1 − c1)q1 +

∫ 1

0

π∗m2(x)f(x)dx

πm2(x) = (1− φ2)p2(a2 − b2p2) + (w2 − c2(x))q2

Recall that Scn denotes the inventory threshold in a centralized channel given by (4.9).

Define A = −γµ2(a1 + a2) + c1(4µ− bγσ2) > 0.

Theorem 4.5.3 (i) If Scn > 0, consider the following revenue sharing contract set (φ1, φ2, w
∗
1, w

∗
2):

set w∗
1 = c1φ2 − h(1− φ2), where φ1 ∈ [0, 1], φ2 ∈

[
h(4µ−bγ(2µ2+σ2))

A+(2−bγµ)µh
, 1

]
and φ1 and φ2 satisfy

the following relationship:

φ1 = φ2 − h(1− φ2) [4µ− bγ(2µ2 + σ2)]

A− h [2µ− bγ(µ2 + σ2)]
;

set w2(x) = φ2c
∗
2(x) = φ2(c1 − xγq∗1), where q∗1 is the equilibrium first period production

quantity in a centralized channel when inventories are allowed and is given by Lemma 4.5.1.

(a)The above policy of (φ1, φ2, w
∗
1, w

∗
2) achieves channel coordination.

(b) φ1 6 φ2. When h = 0, φ1 = φ2.

(ii) If Scn 6 0, then no inventory is carried and the coordinating contracts are the same as

those when inventories are allowed which are described in Theorem 4.4.4.

Theorem 4.5.3 shows that revenue sharing contracts can coordinate the decentralized chan-

nel when inventory is carried. The manufacturer has four degrees of freedom to specify the

revenue sharing contracts. However, when inventories are allowed and are actually carried

in equilibrium, he has to equate the three parameters that govern the retailer’s behavior

(the retail prices in Periods 1 and 2 and the initial inventory level in Period 2). Thus, the

manufacturer has one degree of freedom to choose the contract parameter and he no longer

has the flexibility to pick up both rates: the two rates are interdependent. In coordina-

tion, the second period revenue sharing rate is required to be greater than or equal to the

first-period revenue sharing rate.

For a special case of zero holing cost h = 0, the two rates are the same: φ1 = φ2.
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Table 4.3. Impact of Holding Cost (a1 = a2 = a, γ = 0)
No Inventory Inventory

(w1, w2)
{

a+bc1
2b

, a+bc1
2b

} {
9a+8bc1−2bh

17b
, 6a+11bc1+10bh

17b

}
(p1, p2)

{
3a+bc1

4b
, 3a+bc1

4b

} {
13a+4bc1−bh

17b
, 23a+11bc1+10bh

34b

}
(q1, q2)

{
a−bc1

4
, a−bc1

4

} {
13a−13bc1−18bh

34
, 3a−3bc1+5bh

17

}

(D1, D2)
{

a−bc1
4

, a−bc1
4

} {
(4a+b(−4c1+h)

17
, 11a−11bc1−10bh

34

}

I2 0 5(a−b(c1+4h))
34

πr
(a−bc1)2

8b
155(a−bc1)2+118b(−a+bc1)h+304b2h2

1156b

πm
(a−bc1)2

4b
9(a−bc1)2+4b(−a+bc1)h+8b2h2

34b

4.6 Value of Strategic Inventory

In the previous sections, we derive the results for the cases when inventories are allowed

and when they are not allowed to carry. We use superscripts N and I to denote the cases

when inventories are not allowed and when inventories are allowed, respectively. We derive

the preferences of manufacturer, retailer, and supply chain with regard to inventory versus

no inventory by comparing the profits of each channel member under these two cases. We

are interested in identifying the value of strategic inventories to the channel members.

4.6.1 Impact of Holding Cost h

We explore how the holding cost h affects the retailer’s, the manufacturer’s, and the supply

chain’s profits in the two cases. In order to focus on the effects of inventory holding cost,

we consider a special case without learning effect and with equal market potentials in two

periods. We set γ = 0 and a1 = a2 = a to get the results summarized in Table 4.3. This

problem reduces to the one studied by Anand et al. (2008), which is the first to identify

the strategic inventories in a vertical supply chain. Note that with γ = 0, the centralized

channel does not carry inventory. So in the decentralized channel, whenever the retailer

carries inventory, it is carried for pure strategic considerations.

Proposition 4.6.1 If there is no learning effect and the market potential is symmetric in
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two periods, πI∗
m > πN∗

m . The retailer’s profits comparisons are

πI∗
r − πN∗

r





> 0, if 0 6 h < 21(a−bc1)
152b

,

< 0, if 21(a−bc1)
152b

< h < a−bc1
4b

,

= 0, if h > a−bc1
4b

.

The supply chain’s profits comparisons are:

πI∗
c − πN∗

c





> 0, if 0 6 h <
55(a− bc1)

288b
,

< 0, if
55(a− bc1)

288b
< h <

a− bc1

4b
,

= 0, if h > a− bc1

4b
.

In a decentralized channel when γ = 0 and a1 = a2, the retailer carries strategic inventory

when inventory is not too costly to carry, i.e., h < a−bc1
4b

; otherwise, the retailer does not

carry inventory. When inventories are carried, the manufacturer increases his first-period

wholesale price (wN∗
1 < wI∗

1 ). By carrying strategic inventories, the retailer forces the

manufacturer to price only for the retailer’s residual demand in the second period (Anand

et al. 2008). The retailer’s strategic inventories are used to mitigate the manufacturer’s

monopoly power in the second period. Let wI∗
avg = (wI∗

1 +wI∗
2 )/2 and wN∗

avg = (wN∗
1 +wN∗

2 )/2

denote the average wholesale prices when inventories are allowed and when inventories are

not allowed, respectively. From Table 4.3, we have wI∗
avg < wN∗

avg: the overall effect is that

the retailer forces the manufacturer to reduce the wholesale price when she carries strategic

inventories.

Interestingly, the manufacturer benefits when the retailer carries strategic inventories.

However, the retailer may be better off or worse off when she carries inventory. Specifically,

for a low inventory holding cost h (0 < h < 21(a−bc1)
152b

), the retailer carries inventory and she

is better off doing so than when inventories are not allowed at all.

For a medium value of h, the retailer carries inventory in equilibrium but she is worse

off with inventory. Two questions arise here. Why is the retailer worse off with inventory?

Why does the retailer carry inventory if she is worse off? For the first question, the retailer’s
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preferences between inventory versus no inventory reflect a trade-off between the retailer’s

power and inventory holding cost. Although the retailer gains more power with strategic

inventory, the power comes with the inventory holding cost which the retailer incurs solely.

For a low h, the retailer’s power outweighs the holding cost so she is better off carrying

inventory. For a medium or high h, the holding cost is so high that inventory carryover

option hurts the retailer. For very high h, the retailer does not carry inventory as it is too

costly. For the second question, when inventories are allowed to carry, the manufacturer sets

the wholesale prices in each period in such a way that the retailer has to carry inventory.

Now let’s look at the supply chain’s preference. For a low value of h, when inventory

is carried, the retailer’s total order quantity from two periods is higher, i.e., qI∗
1 + qI∗

2 >

qN∗
1 + qN∗

2 . Let pI∗
avg = (pI∗

1 + pI∗
2 )/2 and pN∗

avg = (pN∗
1 + pN∗

2 )/2 denote the average retail

prices when inventories are and inventories are not allowed. From Table 4.3, we have

pI∗
avg < pN∗

avg for 0 < h < a−bc1
4h

. Therefore, the strategic inventories mitigate the double

marginalization problem. The improvement in the profit benefits both the manufacturer

and retailer therefore the supply chain’s profit is higher when inventory is carried. As

the manufacturer controls the wholesale prices thus control the strategic inventories, with

symmetric markets, he is always better off with low and medium inventory cost. However,

for very high inventory holding cost, he is unable to extract the profit as the wholesale prices

are not sufficient to recoup the loss from the low order quantity.

4.6.2 Impact of Learning Efficiency Mean

In this subsection, we study the impact of learning rate parameter γ on the value of inventory

carryover. We consider a special case of h = 0 and a1 = a2. To focus on the impact the

learning efficiency mean, we assume σ = 0 and µ = 1 so that the problem reduces to a

deterministic learning, i.e., c2 = c1 − q1γ. Define G(bγ) as a function of bγ given in the

Appendix. For this special case, in a decentralized channel, the retailer carries inventory in

equilibrium when she is allowed to do so but the centralized channel does not carry inventory

(see Equation 4.9).
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Table 4.4. Impact of Learning Efficiency (a1 = a2 = a, h = σ = 0, µ = 1)
Inventory not Allowed Inventory Allowed

w1
24a+8bc1+b(a−bc1)γ

32b
− 8(a−bc1)(8+3bγ)

32b(8−b2γ2)

{ −bc1(32+bγ(26+bγ(−10+bγ)))
2b(−34+15bγ(−2+bγ))

+a(−36+bγ(−34+bγ(20+bγ)))
2b(−34+15bγ(−2+bγ))

}

w2
bc1(32+bγ(8−bγ))+a(32−bγ(8+7bγ))

8b(8−b2γ2)
bc1(−44+bγ(−50+3bγ))+a(−24+bγ(−10+27bγ))

2b(−34+15bγ(−2+bγ))

(p1, p2)

{ −bc1(8+3bγ)+a(−24+bγ(3+4bγ))
4b(−8+b2γ2)

,
bc1(−32+bγ(−8+bγ))+a(−96+bγ(8+15bγ))

16b(−8+b2γ2)

} {
bc1(32+bγ(32−bγ))+a(104+bγ(88−59bγ))

4b[34+15bγ(20−bγ)]
,

bc1(44+bγ(50−3bγ))+a(−92+bγ(70−57bγ))
4b[34+15bγ(20−bγ)]

}

(q1, q2)
{

(a−bc1)(8+3bγ)
4(8−b2γ2)

, (a−bc1)(32+bγ(8−bγ))
16(8−b2γ2)

} {
(a−bc1)(26+23bγ)
68+30bγ(2−bγ)

, (a−bc1)(6+bγ(9−bγ))
34+15bγ(2−bγ)

}

(D1, D2)
{

(a−bc1)(8+3bγ)
4(8−b2γ2)

, (a−bc1)(32+bγ(8−bγ))
16(8−b2γ2)

} {
(a−bc1)(−32+bγ(−32+bγ))

4[34+15bγ(2−bγ)]
,

(a−bc1)(88+bγ(74−29bγ+x(26+23bγ)))
8[34+15bγ(2−bγ)]

}

I2 0 (a−bc1)(20+bγ(14+bγ))
4[34+15bγ(2−bγ)]

πr
(a−bc1)2(2048+bγ(768+bγ(−176+bγ(−48+7bγ))))

256b(8−b2γ2)2
(a−bc1)2{1240+bγ(2384+bγ(630+bγ(−534+53bγ)))}

8b[34+15bγ(2−bγ)]2

πm
(a−bc1)2(128+bγ(48+bγ))

64b(8−b2γ2)
(a−bc1)2(36+bγ(44+bγ))

4b[34+15bγ(2−bγ)]

Proposition 4.6.2 When h = 0 and a1 = a2 = a, then πI∗
m > πN∗

m , πI∗
c > πN∗

c and

πI∗
r − πN∗

r





> 0, if 0 6 bγ < G0,

6 0, if G0 6 bγ < 1,

where G0 ≈ 0.4579 is the unique solution to G(bγ) = 0.

Proposition 4.6.2 shows that both the manufacturer and supply chain are better off when

the retailer carries inventory. Interestingly, the retailer is worse off with inventory when the

learning process is very efficient (i.e., the manufacturer learns fast), and is better off only

when the learning is not significant. The learning favors the manufacturer more than the

retailer. The intuition is as follows.

When learning effect is present, inventories are carried not only for strategic considera-

tions but also for operational reasons. The strategic value is mitigated due to the learning ef-

fect. The retail and wholesale prices are decreasing across periods: pI∗
1 > pI∗

2 and wI∗
1 > wI∗

2 .

The retailer’s retail prices decrease in γ in each period4. The first-period wholesale price is

4We have ∂p∗1
∂γ = − (a−bc1)(64+bγ(446+225bγ)

2(34−15bγ(−2+bγ))2 < 0 and ∂p∗2
∂γ = − (a−bc1)(95+3bγ(93+55bγ)

(34−15bγ(−2+bγ))2 < 0
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Table 4.5. Impact of Market Sizes (h = γ = 0)
No Inventory Inventory

Wholesale price (w1, w2)
{

a1+bc1
2b

, a2+bc1
2b

} {
9(a1+a2)+16bc1

34b
, 3(a1+a2)+11bc1

17b

}

Retail price (p1, p2)
{

3a1+bc1
4b

, 3a2+bc1
4b

} {
43a1+9a2+16bc1

68b
, 3a1+20a2+11bc1

34b

}

Order quantity (q1, q2)
{

a1−bc1
4

, a2−bc1
4

} {
13(a1+a2−2bc1)

68
, 3(a1+a2−2bc1)

17

}

Demand (D1, D2)
{

a1−bc1
4

, a2−bc1
4

} {
25a1−9a2−16bc1

68
, 14a2−3a1−11bc1

34

}
Inventory I2 0 11a2−6a1−5bc1

34

Retailer’s profit πr
a2
1+a2

2−2(a1+a2)bc1+2b2c21
16b

733(a1−a2)2+620(a1−bcc)(a2−bc1)
4624b

Manufacturer’s profit πm
a2
1+a2

2−2(a1+a2)bc1+2b2c21
8b

9(a1+a2−2bc1)2

136b

increasing in γ with a low value of γ and then it is decreasing in γ. The inventory level is

increasing in γ initially and then decreasing in γ for a medium and high value5.

4.6.3 Impact of Market Potential

Recall that with symmetric markets a1 = a2, the manufacturer is always better off with

strategic inventories when learning curve effect is absent. We now investigate how the

market sizes a1 and a2 affect the retailer’s, the manufacturer’s, and the supply chain’s

preferences for inventories. As we focus on the impact of market sizes, we study the special

case with no holding cost and no learning curve effect. From Table 4.5, we know that if

a2 > 6a1+5bc1
11

, the retailer carries inventory, and otherwise she does not.

Proposition 4.6.3 When inventory holding cost is zero and there is no learning curve

effect, i.e., h = 0 and γ = 0, we have πI∗
r > πN∗

r > 0, πI∗
c > πN∗

c and

πI∗
m − πN∗

m





< 0, if a2 > 9a1−bc1+
√

17(a1−bc1)
8

,

> 0, if 9a1−bc1−
√

17(a1−bc1)
8

< a2 < 9a1−bc1+
√

17(a1−bc1)
8

,

< 0, if 6a1+5bc1
11

< a2 < 9a1−bc1−
√

17(a1−bc1)
8

,

= 0, if a2 6 6a1+5bc1
11

.

For the case of h = 0 and γ = 0, the retailer, as well as the supply chain, is better off

when inventories are carried. We find that pI∗
avg < pN∗

avg. The supply chain is better off as the

5We have ∂I∗2/∂γ < 0 for bγ ∈ [0, 0.1747] and ∂I∗2/∂γ > 0 for bγ ∈ (0.1747, 1).
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strategic inventories lower the average retail prices and mitigate the double marginalization.

This happens partly due to the zero holding cost which encourages the retailer to carry

inventory.

However, the manufacturer’s profit comparison depends on the relative market sizes.

When the second-period market size is very large, the manufacturer’s wholesale prices are

lower with inventory, i.e., wI∗
1 < wN∗

2 . Therefore, the manufacturer is better off when

the retailer cannot carry inventory. Without learning curve effect, the inventory is carried

strategically to mitigate the manufacturer’s monopoly power in the second period. The

higher the second-period market size, the more inventory the retailer will carry and the

larger her negotiation power (control) is with the manufacturer. Hence a2 favors the retailer,

not the manufacturer.

4.7 Conclusion

In a two-period model, we study the learning curve effect in a decentralized supply chain

with one manufacturer and one retailer. The manufacturer has opportunities to reduce

the (expected) second period per unit production cost due to the first period production

experience. We consider a stochastic learning curve, that is the learning rate is random

in the first period. We study the implications of learning curve effect on the strategic

inventories and dynamic channel coordination. Strategic inventories arise in a two-period

decentralized supply chain as the retailer can use them to mitigate the manufacturer’s

monopoly power in the second period. The outcome of the learning rate is revealed at the

end of first period. We study cases when inventories are and are not allowed to carry. For

each scenario, we investigate whether a RS contract can coordinate the two-period supply

chain. The learning curve effect magnifies the double marginalization effect. We find that

RS contract can coordinate the supply chain. However, the coordinating RS contract has

different structure. When inventories are allowed and are actually carried in equilibrium,

the manufacturer has less flexibility in choosing the revenue sharing rates. As a result, a
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smaller range of wholesale price contracts can coordinate the supply chain.

One possible extension of our two-period learning curve model is to consider more pe-

riods. We conjecture that the strategic inventories still exist as shown by Anand et al.

(2008).

It would be interesting to see whether the results would hold with exponential learning.

The difficulty with the exponential learning is that it compounds the problem which makes

closed-form solutions imposable to attain.

4.8 Proofs

Proof of Proposition 4.4.1.

The fist order condition of π2(x) with regard to p2 gives us the best response retail price

p2(x) = a2+bc2(x)
2b

= a2+b[c1−xγ(a1−bp1)]
2b

. Substitute this best response retail price p2(x) into

π2(x) and the expected second-period profit E[π∗2(x)] is given by:

E [π∗2(x)] =
1

4b

∫ 1

0

(a2 − bc2(x))2 f(x)dx

=
1

4b

∫ 1

0

[a2 − b (c1 − xγ (a1 − bp1))]
2 f(x)dx

=
1

4b

∫ 1

0

[
(a2 − bc1)

2 + 2b (a2 − bc1) (a1 − bp1) γx + (bγx (a1 − bp1))
2] f(x)dx

=
1

4b
(a2 − bc1)

2 +
γµ

2
(a2 − bc1) (a1 − bp1) +

1

4
bγ2 (a1 − bp1)

2 E
[
x2

]
(4.12)

The channel’s first period problem is to

π∗ = max
p1>0

{(p1 − c1)(a1 − bp1) + E[π∗2(x)]}

where E[π∗2(x)] is given by (4.12) which is a function of p1. We solving the above equation to

obtain the equilibrium retail price p∗1 in Proposition 4.4.1. We derive the other equilibrium

results q∗1, E[c∗2], p∗2, and p∗2 using the following relationships: q∗1 = a1−bp∗1, E[c∗2] = c1−γµq∗1,

p∗2 = (a2 + bE[c∗2])/(2b), and q∗2 = a2 − bp∗2.

Proof of Proposition 4.4.2
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The first order condition of πr2 with regard to p2 gives us the best response retail price

p2(w2) = a2+bw2

2b
. Substitute this response function into and take the first order condition

with regard to w2 gives us w2(x) = a2+bc2(x)
2b

. The manufacturer and the retailer’s profits

in the second period are: π∗r2(x) = (a2−bc2(x))2

16b
and π∗m2(x) = (a2−bc2(x))2

8b
, where c2(x) =

a1 − γµxq1. In Period 1, the retailer selects the retail price p1 to maximize the total profit

from both periods:

max
p1

{
(p1 − w1)(a1 − bp1) +

1

16b

∫ 1

0

[a2 − b(c1 − γx(a1 − bp1))]
2 f(x)dx

}
(4.13)

The first order condition of (4.13) with regard to p1 gives us the best repones retail price

p1(w1) as a function of w1:

p1(w1) =
8(a1 + bw1)− (a2 − bc1)γµ + a1b

2γ2(µ2 + σ2)

b [16− b2γ2(µ2 + σ2)]
(4.14)

The manufacturer sets the wholesale price in the first period to maximize the total profit

from the two periods:

max
w1

{
(w1 − c1)(a1 − bp1(w1)) +

1

8b

∫ 1

0

[a2 − b(c1 − γx(a1 − bp1(w1)))]
2 f(x)dx

}
(4.15)

Solve (4.15) for the equilibrium wholesale prices w∗
1. We obtain the equilibrium retail price

p∗1 by substituting w∗
1 into (4.20). Other equilibrium results are obtained using the following

relationship: q∗1 = a− bp∗1, c∗2 = c1 − γµq∗1, w∗
2 =

a+bc∗2
2b

, p∗2 =
a2+bw∗2

2b
, and q∗2 = a2 − bp∗2.

Proof of Proposition 4.4.3

(i)-(ii) We can show the following relationships hold:

pD∗
1 − pC∗

1 =
32(a1 − bc1) + bγµ [20− b2γ2(µ2 + σ2)] (a2 − bc1)

4b [8− b2γ2(µ2 + σ2)] [4− b2γ2(µ2 + σ2)]
> 0

qD∗
1 − qC∗

1 = b(pC∗
1 − pD∗

1 ) < 0

E[pD∗
2 ]− E[pC∗

2 ] =
32(a1 − bc1) + bγµ [20− b2γ2(µ2 + σ2)] (a2 − bc1)

4b [8− b2γ2(µ2 + σ2)] [4− b2γ2(µ2 + σ2)]
> 0

E[qD∗
2 ]− E[qC∗

2 ] = b(E[pC∗
2 ]− E[pD∗

2 ]) < 0

E[cD∗
2 ]− E[cC∗

2 ] = γµ(qC∗
1 − qD∗

1 ) > 0
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and

πD∗
c − πC∗

c =




− (a2−bc1)2(1024−64b2γ2µ2−256b2γ2σ2+b4γ4µ4+17b4γ4µ2σ2+16b4γ4σ4)

256b[8−b2γ2(µ2+σ2)]2

−64b2γ2(a1−bc1)2(µ2+σ2)+16bγµ(a1−bc1)(a2−bc1)(32−b2γ2(µ2+σ2))

256b[8−b2γ2(µ2+σ2)]2



 < 0.

Proof of Theorem 4.4.4.

(i) The first order condition of the retailer’s profit in Period 2 gives the best response

p2(w2) = a2φ2+bw2

2bφ2
. If the manufacturer sets w2 = φ2c2(x), then p2 = a2+bc2(x)

2b
= a2+b(c1−γx(a1−bp1))

2b
.

The retailer’s total profit from both periods is given by:

πr = (φ1p1 − w1) (a1 − bp1) + φ2E [π∗2 (x)] (4.16)

where E[π∗2(x)] is the second period profit in the centralized channel and is given by (4.12).

Take the first order condition of (4.16) and solve for the best response p1(w1):

p1(w1) =
2 (a1φ1 + bw1)− φ2bγ (µ (a2 − bc1) + a1bγ(µ2 + σ2))

b [4φ1 − φ2b2γ2(µ2 + σ2)]
. (4.17)

Equate (4.17) to p∗1 in the centralized case, and solve for w1 to get the coordinating wholesale

price w∗
1 in Theorem 4.4.4. Under such a coordinating wholesale price contract, the first

period retail price is equal to that in the centralized channel and the order quantity is equal

to that in the centralized channel. The channel coordination is achieved in Period 1. In

Period 2, if the manufacturer sets w∗
2 = φ2c

∗
2(x) = φ2(c1− γxq∗1), where q∗1 = a1− bp∗1 and is

given by Proposition 1(i), then the coordination is achieved in Period 2 as the second period

retail price, order quantity, wholesale price are equal to those in the centralized channel,

respectively.

(ii) It is straightforward by substituting φ1 = φ2 = φ into w∗
1 to get w∗

1 = φc1.

Proof of Proposition 4.4.5.

We have
∂w∗2(x)

∂φ1
= 0 and

∂w∗2(x)

∂φ2
> 0. The following holds:

∂w∗
1

∂φ2

=
γ (2µ(a2 − bc1) + bγ(a1 − bc1)(µ

2 + σ2))

4− b2γ2(µ2 + σ2)
> 0

∂π∗r
∂φ1

= −∂π∗m
∂φ1

=
(2(a1 − bc1) + bγµ(a2 − bc1))

2

b (4− b2γ2(µ2 + σ2))2 > 0
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and

∂π∗r
∂φ2

= −∂π∗m
∂φ2

=





[16−8b2γ2(µ2+σ2)+b4γ4σ2(µ2+σ2)](a2−bc1)2

4b(4−b2γ2(µ2+σ2))2

−4b2γ2(µ2+σ2)(a1−bc1)2+4b3γ3µ(µ2+σ2)(a1−bc1)(a2−bc1)

4b(4−b2γ2(µ2+σ2))2





If a2 > Φ(c1) ≡ bc1+
2bc1(1−bγ)

√
µ2+σ2

4−b2γ2(µ2+σ2)−b2γ2µ
√

µ2+σ2
, then ∂π∗r

∂φ2
= −∂π∗m

∂φ2
> 0; if a2 < Φ(c1), then

if a1 6 Ψ(a2) ≡ bc1 +
bγ(a2−bc1)

[
4−b2γ2(µ2+σ2)−b2γ2µ

√
µ2+σ2

]

2b2γ2
√

µ2+σ2
, then ∂π∗r

∂φ2
= −∂π∗m

∂φ2
> 0; otherwise,

∂π∗r
∂φ2

= −∂π∗m
∂φ2

< 0.

Proof of Lemma 4.5.1.

We fist assume that I2 > 0. Later we will provide the condition under which this actually

occurs. The retailer’s profit in Period 2:

π2(p2, q2|x) = p2 (a2 − b2p2)− c2 (x) (a2 − b2p2 − I2)− hI2

The first order condition of the above equation gives p2 (x) = a2+bc2(x)
2b

. Substitute p2(x)

and take the expected second-period profit E [π∗2(p1, q1)] =
∫ 1

0
π2(p2, q2|x)f(x)dx:

E [π∗2(p1, q1)] =

∫ 1

0

[p2(x) (a2 − bp2(x))− c2 (x) (a2 − bp2(x)− I2) f(x)] dx− hI2

=
1

4b

∫ 1

0

(a2 − bc2(x))2 f(x)dx +

∫ 1

0

c2(x)I2f(x)dx− hI2

=
1

4b

∫ 1

0

(a2 − b (c1 − γxq1))
2 f(x)dx +

∫ 1

0

(c1 − γxq1) [q1 − (a1 − bp1)] f(x)dx

−h [q1 − (a1 − bp1)]

=
1

4b

{
(a2 − bc1)

2 + 2γµb2 [a2 − bc1] q1 + (bγq1)
2 E

[
x2

]}

+ [q1 − (a1 − bp1)] (c1 − γµq1 − h) (4.18)

The first-period profit is given by

π = p1 (a1 − bp1)− c1q1 + E [π∗2(p1, q1)] ,

where E [π∗2(p1, q1)] is given by (4.18). Take the first order condition of π with regard to p1
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and q1, respectively:

∂π

∂p1

= a1 − 2bp1 + b1 (c1 − γµq1 − h) = 0

∂π

∂q1

= −h +
1

2
bq1γ

2E
[
x2

]
+ γµ

[
a1 +

1

2
(a2 − bc1)− bp1 − 2q1

]
= 0

Solving the above two equations simultaneously to get the equilibrium retail price and

quantity in Period 1 as shown in Lemma 4.5.1. The optimal inventory I∗2 is given by

I∗2 = q∗1 − (a1 − b1p
∗
1)

=
γ [µ(2− bγµ)(a2 − a1) + bγσ2(a1 − bc1)]− h [4− b2γ2(µ2 + σ2)]

2γ(4µ− 2bγµ2 − bγσ2)
.

Under our assumptions, we have (4µ− 2bγµ2 − bγσ2) > 0 and 4− b2γ2(µ2 + σ2) > 0. Let

Scn = −h
[
4− b2γ2(µ2 + σ2)

]
+ γ

[
µ(2− bγµ)(a2 − a1) + bγσ2(a1 − bc1)

]

If Scn > 0, we have I∗2 > 0; otherwise I∗2 = 0.

Proof of Lemma 4.5.2.

We consider two cases: I∗2 > 0 and I∗2 = 0, where the latter case is solved in Section 4.2.

We first assume that the inventory is carried and proceed to solve the problem. Then we

provide conditions for this to hold. In the second period, the best response retail price is

p = (a2 + b2w2)/2b. The manufacturer solves the second period problem to get w2(x) =

(a2 + bc2(x) − 2I2)/2b, where c2(x) = c1 − q1γx. We obtain the second period profits for

retailer and the manufacturer as:

π∗r2(x) =
1

16b

[
(a2 − bc2(x))2 + 4I2(3a2 + b(c2(x)− 4h))− 12I2

2

]

π∗m2(x) =
1

8b
(a2 − bc2(x)− 2I2)

2

where c2(x) = c1 − q1γx and I2 = q1 − (a1 − bp1). In the first period, the retailer solves the

following problem:

πr(p1, q1) = πr1(p1, q1) +
1

16b

∫ 1

0

[
(a2 − bc2(x))2 + 4I2(3a2 + bc2(x))− 12I2

2

]
f(x)dx
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where πr1(p1, q1) = p1(a1 − bp1) − w1q1. Take the first order condition of πr(p1, q1) with

regard to p1 and q1. Set ∂πr(p1, q1)/∂p1 = 0 and ∂πr(p1, q1)/∂q1 = 0 and solve the two

equations simultaneously to get the best responses p1(w1) and q1(w1) as follows:

q1(w1) =
8(3a1 + 3a2 + b(c1 − 4h− 7w1) + 4b(a1 + a2 + b(−2c1 + h))γµ

48− bγ (8µ(−2 + bγµ) + 7bγσ2)
(4.19)

p1(w1) =
4b2γ2µ2(3a1 + a2 − bh) + b2γ2σ2(10a1 + 3a2 + b(c1 − 4h))

2b (−48 + bγ (8µ(−2 + bγµ) + 7bγσ2)))

−48(a1 + bw1) + 8b(2a1 + b(c1 − h + w1))γµ

2b (−48 + bγ (8µ(−2 + bγµ) + 7bγσ2))
(4.20)

Substitute (4.19) and (4.20) into c2(x) = c1 − q1γx and I2 = q1 − (a1 − bp1). The manufac-

turer’s first-period problem is:

π∗m = max
w1

{
πm(w1) = (w1 − c1)q1(w1) +

1

8b

∫ 1

0

[a2 − bc2(x)− 2I2]
2 f(x)dx

}
(4.21)

The first order condition of πm(w1) in (4.21) with regard to w1 gives the equilibrium w∗
1:

w∗
1 =





32(9a1+9a2+16bc1)+16b(17a1+17a2+26bc1)γµ
8b(136+120bγµ−60b2γ2µ2−49b2γ2σ2)

−2b2γ2(80a1µ2+80a2µ2+80bc1µ2+71a1σ2+71a2σ2+54bc1σ2)
8b(136+120bγµ−60b2γ2µ2−49b2γ2σ2)

− b3(a1+a2−2bc1)γ3µ(8µ2+5σ2)
8b(136+120bγµ−60b2γ2µ2−49b2γ2σ2)

− bh(128+464bγµ−208b2γ2µ2+8b3γ3µ3−152b2γ2σ2+5b3γ3µσ2)
8b(136+120bγµ−60b2γ2µ2−49b2γ2σ2)





(4.22)

Substitute (4.22) into (4.19) and (4.20) to get the equilibrium retail price as

p∗1 =





4(43a1+9a2+16bc1)+4b(37a1+7a2+16bc1)γµ
2b(136+120bγµ−60b2γ2µ2−49b2γ2σ2)

+
−b2γ2(89a1µ2+29a2µ2+2bc1µ2+70a1σ2+21a2σ2+7bc1σ2)

2b(136+120bγµ−60b2γ2µ2−49b2γ2σ2)

+
bh(−16−78bγµ+31b2γ2µ2+28b2γ2σ2)
2b(136+120bγµ−60b2γ2µ2−49b2γ2σ2)





(4.23)

and the first-period order quantity q∗1 as

q∗1 =
(a1 + a2 − 2bc1)(26 + 23bγµ) + bh(−72 + 23bγµ)

136 + 120bγµ− 60b2γ2µ2 − 49b2γ2σ2
(4.24)
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Substitute (4.23) and (4.24) into E[c2(x)] = c1 − q∗1γµ to get

E[c∗2] = c1 − q∗1γµ

=





136c1−2γµ(13a1+13a2−86bc1)+bhγµ(72−23bγµ)
136+120bγµ−60b2γ2µ2−49b2γ2σ2

− bγ2(23a1µ2+23a2µ2+14bc1µ2+49bc1σ2)
136+120bγµ−60b2γ2µ2−49b2γ2σ2





and into I∗2 = q∗1 − (a1 − bp∗1) to get I∗2 in(), and into E[w∗
2] = (a2 + bE[c2(x)− 2I∗2 ])/2b to

get

E[w∗
2] =

a2 + bE[c2(x)− 2I∗2
2b

=





8(3a1+3a2+11bc1)+10b(a1+a2+10bc1)γµ
b(136+120bγµ−60b2γ2µ2−49b2γ2σ2)

+
−b2γ2(27a1µ2+27a2µ2+6bc1µ2+14a1σ2+14a2σ2+21bc1σ2)

b(136+120bγµ−60b2γ2µ2−49b2γ2σ2)

+
bh(80+52bγµ−27b2γ2µ2−14b2γ2σ2)
b(136+120bγµ−60b2γ2µ2−49b2γ2σ2)





E[p∗2] =
8(3a1 + 20a2 + 11bc1) + 10b(a1 + 13a2 + 10bc1)γµ

2b (136 + 120bγµ− 60b2γ2µ2 − 49b2γ2σ2)

+
−b2γ2 (27a1µ

2 + 87a2µ
2 + 6bc1µ

2 + 14a1σ
2 + 63a2σ

2 + 21bc1σ
2)

2b (136 + 120bγµ− 60b2γ2µ2 − 49b2γ2σ2)

+
bh (80 + 52bγµ− 27b2γ2µ2 − 14b2γ2σ2)

2b (136 + 120bγµ− 60b2γ2µ2 − 49b2γ2σ2)

E[q∗2] =
(a1 + a2 − 2bc1) (12 + 18bγµ− 2b2γ2µ2 − 7b2γ2σ2)

136 + 120bγµ− 60b2γ2µ2 − 49b2γ2σ2

+
bh (40− 10bγµ− 2b2γ2µ2 − 7b2γ2σ2)

136 + 120bγµ− 60b2γ2µ2 − 49b2γ2σ2

E[c∗2] =
136c1 − 2γµ(13a1 + 13a2 − 86bc1) + bhγµ(72− 23bγµ)

136 + 120bγµ− 60b2γ2µ2 − 49b2γ2σ2

−bγ2 (23a1µ
2 + 23a2µ

2 + 14bc1µ
2 + 49bc1σ

2)

136 + 120bγµ− 60b2γ2µ2 − 49b2γ2σ2

Use I∗2 = q∗1 − (a1 − bp∗1) to get I∗2 expressed in Lemma 4.5.2. Note that I∗2 > 0 when h

satisfies the condition in Lemma 4.5.2. Otherwise, I∗2 = 0 and the solutions are provided in

section 4.4.
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Proof of Theorem 4.5.3.

Suppose that the manufacturer proposes w∗
2(x) = φ2c2(x). The retailer’s optimal profit in

Period 2 is given by:

E[π∗r2] =
∫ 1

0
(φ2p

∗
2(x)(a2 − b2p

∗
2(x))− w∗

2(x)(a2 − b2p
∗
2(x)− I2))f(x)dx (4.25)

where p∗2(x) = (a2 + b2c2(x))/2b2 and I2 = I1 + q1 − (a1 − b1p1).

In Period 1, the retailer’s problem:

max
p1>0,q1>0

πr (p1, q1) = φ1p1(a1 − b1p1)− w1q1 + E[π∗r2]

where E[πr2] is given by (4.25). Solving the problem gives the first period retail price

p∗1 =





(4a1φ1+2bw1+2bc1φ2)µ+bφ2(bc1−2a1−a2)γµ2

2b(4φ1µ−φ1bγ(µ2+σ2)−φ2bγµ2)

−b(a1φ1+bc1φ2)γ(µ2+σ2)−bh(2µ−bγ(µ2+σ2))
2b(4φ1µ−φ1bγ(µ2+σ2)−φ2bγµ2)



 (4.26)

and the order quantity

q∗1 =
((a1 + a2 − bc1)φ1 − bc1φ2)φ2γµ− 2φ1(w1 − c1φ2)− h(2φ1 − bφ2γµ)

φ2γ(4φ1µ− bφ1γ(µ2 + σ2)− bφ2γµ2)
. (4.27)

In order to coordinate the supply chain, the retail price and order quantity in the first

period should be the same as that in the centralized channel. Equating (4.26) to p∗1 in the

centralized case, and (4.27) to q∗1 in the centralized case yields:

w∗
1 = c1φ2 − h(1− φ2)

and

φ1 =
h(−4µ + bγ(2µ2 + σ2)) + (A + (2− bµγ)µh)φ2

A− h(2µ− bγ(µ2 + σ2))
.

where A = −γµ2(a1 + a2) + c1(4µ− bγσ2).

Proof of Proposition 4.6.1.

If γ = 0 and a1 = a2 = a, from Table 4.3 we know that only when 0 6 h < (a− bc1)/4 will
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the retailer carry over inventory. Therefore, when h > (a − bc1)/4, πI∗
m = πN∗

m , πI∗
r = πN∗

r

and πI∗
c = πN∗

c . When 0 6 h < (a− bc1)/4, it can be easily verified that

πI∗
m − πN∗

m =
(−a2 + bc1 + 4bh)2

68b
> 0,

πI∗
r − πN∗

r =
(−a2 + bc1 + 4bh)(−21a2 + 21bc1 + 152bh)

2312b





> 0, if 0 6 h < 21(a−bc1)
152b

,

6 0, if 21(a−bc1)
152b

6 h < a−bc1
4b

,

and

πI∗
c − πN∗

c =
(−a2 + bc1 + 4bh)(−55a2 + 55bc1 + 288bh)

2312b





> 0, if 0 6 h <
55(a− bc1)

288b
,

6 0, if
55(a− bc1)

288b
6 h <

a− bc1

4b
.

This completes the proof.

Proof of Proposition 4.6.2.

If h = 0 and a1 = a2 = a, then

πI∗
m − πN∗

m =
(a− bc1)

2(256 + 160bγ − 2b2γ2 − 14b3γ3 − b4γ4)

64b(8− b2γ2)(34 + 30bγ − 15b2γ2)
> 0;

Let:

A1 = G(bγ) = 172032− 183296bγ − 462144b2γ2 + 35648b3γ3

+124772b4γ4 − 1544b5γ5 − 9736b6γ6 + 12b7γ7 + 121b8γ8

A2 = F (bγ) = 450560 + 236544bγ − 468416b2γ2 − 110784b3γ3 + 107636b4γ4

+15960b5γ5 − 7560b6γ6 − 708b7γ7 + 61b8γ8

We find that G0 ≈ 0.4579. For 0 < bγ < 1, we have A2 > 0. So we have:

πI∗
r − πN∗

r =
A1(a− bc1)

2

256b(8− b2γ2)2(34 + 30bγ − 15b2γ2)2
=





> 0, if 0 6 bγ < G0;

< 0, if G0 < bγ < 1;

πI∗
c − πN∗

c =
A2(a− bc1)

2

256b(8− b2γ2)2(34 + 30bγ − 15b2γ2)2
> 0.
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Proof of Proposition 4.6.3.

If h = 0 and γ = 0, then from Table 4.5 we know that only when a2 > (6a1 + 5bc1)/11

will the retailer carry over inventory. Therefore, when a2 6 (6a1 + 5bc1)/11, πI∗
m = πN∗

m ,

πI∗
r = πN∗

r and πI∗
c = πN∗

c . When a2 > (6a1 + 5bc1)/11, it can be easily verified that

πI∗
r − πN∗

r =
3 (74(a1 − a2)

2 + 7(a1 − bc1)(a2 − bc1))

2312b
> 0,

πI∗
c − πN∗

c =
(86(a1 − a2)

2 + 55(a1 − bc1)(a2 − bc1))

2312b
> 0,

and

πI∗
m − πN∗

m =
−4a2

1 + 9a1a2 − 4a2
2 − a1bc1 − a2bc1 + b2c2

1

68b



< 0, if a2 > 9a1−bc1+
√

17(a1−bc1)
8

,

> 0, if 9a1−bc1−
√

17(a1−bc1)
8

6 a2 6 9a1−bc1+
√

17(a1−bc1)
8

,

< 0, if 6a1+5bc1
11

< a2 < 9a1−bc1−
√

17(a1−bc1)
8

.

This completes the proof.
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Oh, S., Ö. Özer. 2012. Mechanism Design for Capacity Planning under Dynamic Evolutions

of Asymmetric Demand Forecasts. Management Science. Forthcoming.



www.manaraa.com

112

Parlar, M., D. Wang. 1993. Diversification Under Yield Randomness in Two Simple Inven-

tory Models. European Journal of Operational Research, 66(1), 52–64.

Petruzzi, N., M. Dada. 1999. Pricing and the Newsvendor Problem: A Review with Exten-

sions. Operations Research, 47(2), 183–194.

Petruzzi, N. C., M. Dada. 2002. Dynamic pricing and inventory control with learning. Naval

Research Logistics . 49 303-325.

Porteus, E. L. 1990. Stochastic Inventory Theory. D. P. Heyman, M. J. Sobel, eds., Stochastic

Models. North Holland, Amsterdam, The Netherlands, 605–652.

Ramasesh, R., J. K. Ord, J. C. Hayya, A. Pan. 1991. Sole Versus Dual Sourcing in Stochastic

Leadtime (s, Q) Inventory Models. Management Science, 37(4), 428–443.

Rotemberg, J. J., G. Saloner. 1989. Cyclical behavior of strategic inventories. Quarterly

Journal of Economics. 104(1) 73-97.

Saloner, G. 1986. The role of obsolescence and inventory costs in providing commitment.

International Journal of Industrial Organization 4 333-345.

Shaked, M., J. G. Shanthikumar. 2007. Stochastic Orders. Springer, New York.

Spence, A. M. 1981. The learning curve and competition. Bell Journal of Economics 12(1)

49-70.

Swaminathan, J. M., J. G. Shanthikumar. 1999. Supplier Diversification: Effect of Discrete

Demand. Operations Research Letters, 24(5), 213–221.

Tang, C. S., R. Yin. 2007. Responsive Pricing Under Supply Uncertainty. European Journal

of Operational Research, 182(1), 239–255.

Taylor, T.A. 2001. Channel coordination under price protection, midlife returns, and end-

of-life returns in dynamic markets. Management Sci. 47(9) 1220-1234.



www.manaraa.com

113

Tomlin, B. 2006. On the Value of Mitigation and Contingency Strategies for Managing

Supply Chain Disruption Risks. Management Science, 52(5), 639–657.

Tomlin, B. 2009. Impact of Supply Learning When Suppliers are Unreliable. Manufacturing

& Service Operations Management, 11(2), 192–209.

Tomlin, B. T., L. V. Snyder. 2007. On the Value of A Threat Advisory System for Managing

Supply Chain Disruptions. Working Paper. University of North Carolina-Chapel Hill,

Chapel Hill, NC.

Tomlin, B., Y. Wang. 2005. On the Value of Mix Flexibility and Dual Sourcing in Unreliable

Newsvendor Networks. Manufacturing & Service Operations Management, 7(1), 37–57.

Tomlin, B., Y. Wang. 2008. Pricing and Operational Recourse in Coproduction Systems.

Management Science, 54(3), 522–537.

Van Mieghem, J. A., M. Dada. 1999. Price versus Production Postponement: Capacity and

Competition. Management Science, 45(12), 1631–1649.

Wang, Y. 2008. Essays on Supply Risk in Global Operations. PhD Dissertation, The Uni-

versity of North Carolina at Chapel Hill.

Wang, Y., W. Gilland, B. Tomlin. 2010. Mitigating Supply Risk: Dual Sourcing or Process

Improvement. Manufacturing & Service Operations Management, 12(3), 489–510.

Whitin, T. M. 1955. Inventory Control and Price Theory. Management Science, 2(1), 61–68.

Wolfstetter, E. 1999. Topics in Microeconomics: Industrial Organizations, Auctions, and

Incentives. Cambridge University Press.

Wright, T.P. 1936. Factors affecting the cost of airplanes.Journal of Aeronautical Sciences

3(4) 122-128.

WSJ. 2010. China Considers Further Rare-Earth Quotas. Wall Street Journal (December

29).



www.manaraa.com

114

Yano, C. A., H. L. Lee. 1995. Lot Sizing with Random Yields: A Review. Operations

Research, 43(2), 311–334.

Yelle, L. E. 1979. The learning curve: Historical review and comprehensive survey. Decision

Science 10 (2) 302-328.

Zhang, J. 2005. Transshipment and Its Impact on Supply Chain Members’ Performance.

Management Science, 51(10), 1534–1539.



www.manaraa.com

VITA

Tao Li was born in Yangquan, P. R. China, to Mr. Jintang Li and Ms. Aihua Feng. He

received his Bachelor of Engineering degrees in Polymer Materials and Engineering and

Financial Management, Master of Science degree in Management Science and Engineering

from Tianjin University, Tianjin, P. R. China. In Fall 2007, he entered the Ph.D. program

in Operations Management at the University of Texas at Dallas (UTD). While he was

pursuing his Ph.D. degree, he received his Master of Business Administration degree in

2011 and Master of Science degree in Supply Chain Management in 2012 from UTD. At

UTD, he taught the undergraduate core course in Operations Management in Spring 2011,

Summer 2011, Spring 2012, and Summer 2012.


